- absTol - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- AbstractCompletePartitioner - Class in edu.umd.cs.psl.optimizer.conic.partition
-
- AbstractCompletePartitioner() - Constructor for class edu.umd.cs.psl.optimizer.conic.partition.AbstractCompletePartitioner
-
- AbstractFormulaTraverser - Class in edu.umd.cs.psl.model.formula.traversal
-
Implements the depth-first traversal of a formula, but performs no actions
during traversal.
- AbstractFormulaTraverser() - Constructor for class edu.umd.cs.psl.model.formula.traversal.AbstractFormulaTraverser
-
- AbstractGroundRule - Class in edu.umd.cs.psl.model.kernel.rule
-
Currently, we assume that the body of the rule is a conjunction and the head of the rule is
a disjunction of atoms.
- AbstractHitAndRunSampler - Class in edu.umd.cs.psl.sampler
-
Samples points in a constrained continuous Markov random field, using
the "hit-and-run" sampling scheme described in Broecheler and Getoor,
"Computing marginal distributions over continuous Markov networks for
statistical relational learning." NIPS 2010.
- AbstractHitAndRunSampler() - Constructor for class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- AbstractHitAndRunSampler(int) - Constructor for class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- AbstractHitAndRunSampler(int, int) - Constructor for class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- AbstractKernel - Class in edu.umd.cs.psl.model.kernel
-
Allows implementing Kernels to avoid keeping track of which GroundKernelStore
to use when handling AtomEvents.
- AbstractKernel() - Constructor for class edu.umd.cs.psl.model.kernel.AbstractKernel
-
- AbstractRuleKernel - Class in edu.umd.cs.psl.model.kernel.rule
-
- AbstractRuleKernel(Formula) - Constructor for class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.ArgumentContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.ArgumentTypeContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.AtomContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.ConstantContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintTypeContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.IntConstantContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.KernelContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.PredicateContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.PredicateDefinitionContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.ProgramContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.StrConstantContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.VariableContext
-
- accept(ParseTreeVisitor<? extends T>) - Method in class edu.umd.cs.psl.parser.PSLParser.WeightContext
-
- acceptSample(boolean) - Method in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- acceptSample(boolean) - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- acceptSample(boolean) - Method in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- accumulate(ConfusionMatrix) - Method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Accumulates the scores from another confusion matrix.
- accumulate(Collection<ConfusionMatrix>) - Method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Accumulates the scores from a collection of confusion matrices.
- accumulate(SquareMatrix) - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Accumulates the scores from another square matrix.
- accumulate(Collection<SquareMatrix>) - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Accumulates the scores from a collection of square matrices.
- ACRuleFormula - Variable in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- action(RuleContext, int, int) - Method in class edu.umd.cs.psl.parser.PSLLexer
-
- activateAtom(RandomVariableAtom) - Method in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
Adds a AtomEvent#ActivatedRVAtom
event to the job queue for a
RandomVariableAtom, regardless of its truth value.
- ActivatedEventTypeSet - Static variable in class edu.umd.cs.psl.model.atom.AtomEvent
-
- ACTIVATION_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
Default value for ACTIVATION_THRESHOLD_KEY property
- ACTIVATION_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
;
Key for double property in (0,1].
- AD3Reasoner - Class in edu.umd.cs.psl.reasoner.bool
-
Reasoner that performs inferences as a Boolean MRF using the AD3 command-line
executable
(https://github.com/andre-martins/AD3).
- AD3Reasoner(ConfigBundle) - Constructor for class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
- AD3Reasoner.Algorithm - Enum in edu.umd.cs.psl.reasoner.bool
-
Options for AD3 executable algorithms
- AD3ReasonerFactory - Class in edu.umd.cs.psl.reasoner.bool
-
- AD3ReasonerFactory() - Constructor for class edu.umd.cs.psl.reasoner.bool.AD3ReasonerFactory
-
- ADAGRAD_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
Default value for ADAGRAD_KEY
- ADAGRAD_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
Key for Boolean property that indicates whether to use AdaGrad subgradient
scaling, the adaptive subgradient algorithm of
John Duchi, Elad Hazan, Yoram Singer (JMLR 2010).
- add(FunctionSummand) - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- add(FunctionTerm) - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- add(E) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- add(int, E) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- addAll(VariableTypeMap) - Method in class edu.umd.cs.psl.model.argument.VariableTypeMap
-
Performs a shallow copy of all variable-type pairs from another VariableTypeMap to this one.
- addAll(Collection<? extends E>) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- addAll(int, Collection<? extends E>) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- addChild(ExperimentTree) - Method in class edu.umd.cs.psl.util.datasplitter.ExperimentTree
-
- addClosureStep(ClosureStep) - Method in class edu.umd.cs.psl.util.datasplitter.DataSplitter
-
- addCone(Cone, Integer) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- addGroundKernel(GroundKernel) - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
Adds a GroundKernel to this store.
- addGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- addGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- addGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- addGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- addInequalityConstraint(double[], double) - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
Adds a linear inequality constraint
- addKernel(Kernel) - Method in class edu.umd.cs.psl.model.Model
-
Adds a Kernel to this Model.
- addLossAugmentedKernels() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- addMember(A, double) - Method in class edu.umd.cs.psl.model.set.membership.ConstantMembership
-
- addMember(A, double) - Method in interface edu.umd.cs.psl.model.set.membership.Membership
-
- addMember(A, double) - Method in class edu.umd.cs.psl.model.set.membership.SoftMembership
-
- addProperty(String, Object) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Add a property to the configuration.
- addProperty(String, Object) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- addQueryAtomGroundings(Database, Database, QueryAtom, Map<Variable, Set<GroundTerm>>) - Method in class edu.umd.cs.psl.util.datasplitter.builddbstep.QueryAtomsBuildDBStep
-
- addRelation(Relation<ET, RT>) - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- addResult(GroundTerm[]) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- addVariable(Variable, ArgumentType) - Method in class edu.umd.cs.psl.model.argument.VariableTypeMap
-
Adds a variable-type pair to the hashmap.
- addWord(int, double) - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity.WordVector
-
- ADMM_STEPS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
Default value for ADMM_STEPS_KEY
- ADMM_STEPS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
Key for Integer property that indicates how many steps of ADMM to run
for each inner objective before each gradient step (parameter N in the ICML paper)
- ADMMObjectiveTerm - Class in edu.umd.cs.psl.reasoner.admm
-
- ADMMObjectiveTerm(ADMMReasoner, int[]) - Constructor for class edu.umd.cs.psl.reasoner.admm.ADMMObjectiveTerm
-
- ADMMReasoner - Class in edu.umd.cs.psl.reasoner.admm
-
Uses an ADMM optimization method to optimize its GroundKernels.
- ADMMReasoner(ConfigBundle) - Constructor for class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- ADMMReasoner.Hyperplane - Class in edu.umd.cs.psl.reasoner.admm
-
- ADMMReasoner.Hyperplane() - Constructor for class edu.umd.cs.psl.reasoner.admm.ADMMReasoner.Hyperplane
-
- ADMMReasoner.VariableLocation - Class in edu.umd.cs.psl.reasoner.admm
-
- ADMMReasonerFactory - Class in edu.umd.cs.psl.reasoner.admm
-
- ADMMReasonerFactory() - Constructor for class edu.umd.cs.psl.reasoner.admm.ADMMReasonerFactory
-
- afterConjunction(int) - Method in class edu.umd.cs.psl.database.rdbms.Formula2SQL
-
- afterConjunction(int) - Method in class edu.umd.cs.psl.model.formula.traversal.AbstractFormulaTraverser
-
- afterConjunction(int) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaEvaluator
-
- afterConjunction(int) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- afterConjunction(int) - Method in interface edu.umd.cs.psl.model.formula.traversal.FormulaTraverser
-
- afterDisjunction(int) - Method in class edu.umd.cs.psl.database.rdbms.Formula2SQL
-
- afterDisjunction(int) - Method in class edu.umd.cs.psl.model.formula.traversal.AbstractFormulaTraverser
-
- afterDisjunction(int) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaEvaluator
-
- afterDisjunction(int) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- afterDisjunction(int) - Method in interface edu.umd.cs.psl.model.formula.traversal.FormulaTraverser
-
- afterNegation() - Method in class edu.umd.cs.psl.database.rdbms.Formula2SQL
-
- afterNegation() - Method in class edu.umd.cs.psl.model.formula.traversal.AbstractFormulaTraverser
-
- afterNegation() - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaEvaluator
-
- afterNegation() - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- afterNegation() - Method in interface edu.umd.cs.psl.model.formula.traversal.FormulaTraverser
-
- aggregate(Collection<ConfusionMatrix>) - Static method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Aggregates the scores of a collection of confusion matrices.
- aggregate(Collection<SquareMatrix>) - Static method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Aggregates the scores of a collection of square matrices.
- AggregateConstantSetOverlap - Class in edu.umd.cs.psl.ui.aggregators
-
- AggregateConstantSetOverlap() - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateConstantSetOverlap
-
- AggregateConstantSetOverlap(String[]) - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateConstantSetOverlap
-
- AggregateConstantSetOverlap(double) - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateConstantSetOverlap
-
- AggregateSetAverage - Class in edu.umd.cs.psl.ui.aggregators
-
- AggregateSetAverage() - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetAverage
-
- AggregateSetCrossEquality - Class in edu.umd.cs.psl.ui.aggregators
-
- AggregateSetCrossEquality() - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetCrossEquality
-
- AggregateSetCrossEquality(String[]) - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetCrossEquality
-
- AggregateSetEquality - Class in edu.umd.cs.psl.ui.aggregators
-
- AggregateSetEquality(double, double, double) - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- AggregateSetEquality(double) - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- AggregateSetEquality() - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- AggregateSetEquality(String[]) - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- AggregateSetInverseAverage - Class in edu.umd.cs.psl.ui.aggregators
-
Terms are in set2, not set1 like AggregateSetAverage
- AggregateSetInverseAverage() - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetInverseAverage
-
- AggregateSetOverlap - Class in edu.umd.cs.psl.ui.aggregators
-
- AggregateSetOverlap() - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetOverlap
-
- AggregateSetOverlap(String[]) - Constructor for class edu.umd.cs.psl.ui.aggregators.AggregateSetOverlap
-
- aggregateValue(TermMembership, TermMembership, Set<GroundAtom>) - Method in interface edu.umd.cs.psl.model.set.aggregator.AggregatorFunction
-
- aggregateValue(TermMembership, TermMembership, Set<GroundAtom>) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- aggregateValue(TermMembership, TermMembership, Set<GroundAtom>) - Method in class edu.umd.cs.psl.ui.aggregators.EvidSetMin
-
- aggregateValue(TermMembership, TermMembership, Set<GroundAtom>) - Method in class edu.umd.cs.psl.ui.aggregators.SetMin
-
- AggregatorFunction - Interface in edu.umd.cs.psl.model.set.aggregator
-
- ALGORITHM_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
Default value for ALGORITHM_KEY property (AD3)
- ALGORITHM_KEY - Static variable in class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
Key for Algorithm enum property which is inference algorithm to use.
- AllEventTypesSet - Static variable in class edu.umd.cs.psl.model.atom.AtomEvent
-
- AllPredicates - Static variable in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
- ALPHA_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Default value for ALPHA_KEY
- ALPHA_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Key for positive double property, the Dirichlet prior hyperparameter alpha.
- alwaysCutConstraints - Variable in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- AND - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- AND - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- AND() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- apply(DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.BlockPreconditioner
-
- argument() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- argument() - Method in class edu.umd.cs.psl.parser.PSLParser.AtomContext
-
- argument(int) - Method in class edu.umd.cs.psl.parser.PSLParser.AtomContext
-
- argument() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- argument(int) - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- argumentColumns() - Method in interface edu.umd.cs.psl.database.rdbms.RDBMSPredicateHandle
-
- argumentDelimiter - Static variable in class edu.umd.cs.psl.util.dynamicclass.DynamicClassLoader
-
- arguments - Variable in class edu.umd.cs.psl.model.atom.Atom
-
- ArgumentType - Enum in edu.umd.cs.psl.model.argument
-
- argumentType() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- argumentType() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintContext
-
- argumentType(int) - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintContext
-
- argumentType() - Method in class edu.umd.cs.psl.parser.PSLParser.PredicateDefinitionContext
-
- argumentType(int) - Method in class edu.umd.cs.psl.parser.PSLParser.PredicateDefinitionContext
-
- arity() - Method in interface edu.umd.cs.psl.ui.data.graph.RelationType
-
- assign(Variable, GroundTerm) - Method in class edu.umd.cs.psl.model.atom.VariableAssignment
-
Assigns variable var the ground argument arg
- Atom - Class in edu.umd.cs.psl.model.atom
-
- Atom(Predicate, Term[]) - Constructor for class edu.umd.cs.psl.model.atom.Atom
-
- atom() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- atom() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- atom - Variable in class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- AtomCache - Class in edu.umd.cs.psl.model.atom
-
- AtomCache(Database) - Constructor for class edu.umd.cs.psl.model.atom.AtomCache
-
Constructs a new AtomCache for a Database.
- atomDetails(Atom) - Static method in class edu.umd.cs.psl.evaluation.debug.AtomPrinter
-
- atomDetails(Atom, boolean, boolean) - Static method in class edu.umd.cs.psl.evaluation.debug.AtomPrinter
-
- AtomEvent - Class in edu.umd.cs.psl.model.atom
-
- AtomEvent(AtomEvent.Type, RandomVariableAtom, AtomEventFramework) - Constructor for class edu.umd.cs.psl.model.atom.AtomEvent
-
Constructs a new AtomEvent with associated properties
- AtomEvent.Listener - Interface in edu.umd.cs.psl.model.atom
-
A listener for AtomEvents.
- AtomEvent.Type - Enum in edu.umd.cs.psl.model.atom
-
Types of AtomEvents
- AtomEventFramework - Class in edu.umd.cs.psl.model.atom
-
- AtomEventFramework(Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.model.atom.AtomEventFramework
-
- AtomEventFrameworkTest - Class in edu.umd.cs.psl.model.atom
-
- AtomEventFrameworkTest() - Constructor for class edu.umd.cs.psl.model.atom.AtomEventFrameworkTest
-
- AtomFilter - Interface in edu.umd.cs.psl.evaluation.statistics.filter
-
Filters an Iterator over
GroundAtoms
according
to some criterion.
- AtomFunctionVariable - Class in edu.umd.cs.psl.reasoner.function
-
Encapsulates the value of a
GroundAtom
for use in numeric functions.
- AtomFunctionVariable(GroundAtom) - Constructor for class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- AtomicDouble - Class in edu.umd.cs.psl.util.concurrent
-
- AtomicDouble() - Constructor for class edu.umd.cs.psl.util.concurrent.AtomicDouble
-
- AtomicDouble(double) - Constructor for class edu.umd.cs.psl.util.concurrent.AtomicDouble
-
- AtomManager - Interface in edu.umd.cs.psl.model.atom
-
Provides centralization and hooks for managing the
GroundAtoms
that are instantiated from a
Database
.
- AtomPrinter - Class in edu.umd.cs.psl.evaluation.debug
-
- AtomPrinter() - Constructor for class edu.umd.cs.psl.evaluation.debug.AtomPrinter
-
- AtomPrintStream - Interface in edu.umd.cs.psl.evaluation.resultui.printer
-
- Attribute - Interface in edu.umd.cs.psl.model.argument
-
- AUGMENT_LOSS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for AUGMENT_LOSS_KEY
- AUGMENT_LOSS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for boolean property for whether to add loss-augmentation for online large margin
- augmentLoss - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- average(Collection<SquareMatrix>) - Static method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Averages the scores of an array of square matrices.
- average(double[]) - Static method in class edu.umd.cs.psl.ui.experiment.report.StatisticsUtil
-
- AVERAGE_STEPS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for AVERAGE_STEPS_KEY
- AVERAGE_STEPS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for Boolean property that indicates whether to average all visited
weights together for final output.
- averageKLdivergence(Predicate, int, FullConfidenceAnalysisResult) - Method in interface edu.umd.cs.psl.evaluation.result.FullConfidenceAnalysisResult
-
- averageKLdivergence(Predicate, int, FullConfidenceAnalysisResult) - Method in class edu.umd.cs.psl.evaluation.result.memory.MemoryFullConfidenceAnalysisResult
-
- averageKLdivergence(Predicate, int, FullConfidenceAnalysisResult) - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullConfidenceAnalysisResult
-
- averageSteps - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- AvgConjRule - Class in edu.umd.cs.psl.model.formula
-
A PSL rule containing averaging conjunctions.
- AvgConjRule(Formula) - Constructor for class edu.umd.cs.psl.model.formula.AvgConjRule
-
- AvgConjunction - Class in edu.umd.cs.psl.model.formula
-
An averaging conjunction formula.
- AvgConjunction(Formula...) - Constructor for class edu.umd.cs.psl.model.formula.AvgConjunction
-
- C - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- callReasoner() - Method in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
- callReasoner() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- castStringWithModifiersForIndexing(String) - Method in interface edu.umd.cs.psl.database.rdbms.driver.DatabaseDriver
-
String type is not friendly to index.
- castStringWithModifiersForIndexing(String) - Method in class edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver
-
- castStringWithModifiersForIndexing(String) - Method in class edu.umd.cs.psl.database.rdbms.driver.MySQLDriver
-
At most use the first 255 characters in an index containing string
- cg - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- CG_ABS_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Default value for CG_REL_TOL_KEY property
- CG_ABS_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Default value for CG_REL_TOL_KEY property
- CG_ABS_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Default value for CG_REL_TOL_KEY property
- CG_ABS_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Key for double property.
- CG_ABS_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Key for double property.
- CG_ABS_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Key for double property.
- CG_DIV_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Default value for CG_DIV_TOL_KEY property
- CG_DIV_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Default value for CG_DIV_TOL_KEY property
- CG_DIV_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Default value for CG_DIV_TOL_KEY property
- CG_DIV_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Key for double property.
- CG_DIV_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Key for double property.
- CG_DIV_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Key for double property.
- CG_MAX_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Default value for CG_MAX_ITER_KEY property
- CG_MAX_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Default value for CG_MAX_ITER_KEY property
- CG_MAX_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Default value for CG_MAX_ITER_KEY property
- CG_MAX_ITER_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Key for integer property.
- CG_MAX_ITER_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Key for integer property.
- CG_MAX_ITER_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Key for integer property.
- CG_REL_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Default value for CG_REL_TOL_KEY property
- CG_REL_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Default value for CG_REL_TOL_KEY property
- CG_REL_TOL_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Default value for CG_REL_TOL_KEY property
- CG_REL_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Key for double property.
- CG_REL_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Key for double property.
- CG_REL_TOL_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Key for double property.
- CHANGE_THRESHOLD - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Key for maximum iterations
- CHANGE_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Default value for CHANGE_THRESHOLD
- CHANGE_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Default value for CHANGE_THRESHOLD_KEY
- CHANGE_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Default value for CHANGE_THRESHOLD_KEY
- CHANGE_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Key for double property to be multiplied with square root of number of
CompatibilityKernels to form mean change stopping criterion
- CHANGE_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Key for double property to be multiplied with square root of number of
CompatibilityKernels to form mean change stopping criterion
- changedGroundKernel(GroundKernel) - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
Notifies this store that a GroundKernel was changed.
- changedGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- changedGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- changedGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- changedGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- changedGroundKernelWeight(GroundCompatibilityKernel) - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
- changedGroundKernelWeight(GroundCompatibilityKernel) - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- changedGroundKernelWeight(GroundCompatibilityKernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- changedGroundKernelWeight(GroundCompatibilityKernel) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- changedGroundKernelWeight(GroundCompatibilityKernel) - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- changedGroundKernelWeights() - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
- changedGroundKernelWeights() - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- changedGroundKernelWeights() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- changedGroundKernelWeights() - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- changedGroundKernelWeights() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- changeThresholdFactor - Variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- changeThresholdFactor - Variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- checkInAllMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.partition.AbstractCompletePartitioner
-
- checkInAllMatrices() - Method in interface edu.umd.cs.psl.optimizer.conic.partition.CompletePartitioner
-
- checkInMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- checkInMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- checkInProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.Dualizer
-
- checkOutAllMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.partition.AbstractCompletePartitioner
-
- checkOutAllMatrices() - Method in interface edu.umd.cs.psl.optimizer.conic.partition.CompletePartitioner
-
- checkOutMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- checkOutMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- checkOutProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.Dualizer
-
- checkToActivate() - Method in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
Adds a AtomEvent#ActivatedRVAtom
event to the job queue for each
RandomVariableAtom in the Database's AtomCache which is at or above
the activation threshold and has not already been activated by this
AtomEventFramework since being loaded into memory.
- Cholesky - Class in edu.umd.cs.psl.optimizer.conic.ipm.solver
-
Solves normal systems using a Cholesky factorization.
- Cholesky() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.solver.Cholesky
-
- cholesky - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.BlockPreconditioner
-
- choleskyB - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- choleskyD - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- CholeskyFactory - Class in edu.umd.cs.psl.optimizer.conic.ipm.solver
-
Factory for
Cholesky
normal system solver.
- CholeskyFactory() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.solver.CholeskyFactory
-
- clause - Variable in class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- cleanUp() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
Deletes any files and releases any resources used by the tested DataStore
and its persistence mechanism
- cleanUp() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStoreTest
-
- cleanUpGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.LazyMaxLikelihoodMPE
-
- cleanUpGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
- clear() - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Remove all properties from the configuration.
- clear() - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- clear() - Method in class edu.umd.cs.psl.util.collection.HashList
-
- clearClosureSteps() - Method in class edu.umd.cs.psl.util.datasplitter.DataSplitter
-
- clearProperty(String) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Remove a property from the configuration.
- clearProperty(String) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- clone() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.LogLoss
-
- clone() - Method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Returns a deep copy of the confusion matrix.
- clone() - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Returns a deep copy of the matrix.
- clone() - Method in class edu.umd.cs.psl.model.kernel.AbstractKernel
-
- clone() - Method in interface edu.umd.cs.psl.model.kernel.Kernel
-
- clone() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintKernel
-
- clone() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- clone() - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- clone() - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- clone() - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- clone() - Method in class edu.umd.cs.psl.model.kernel.rule.ConstraintRuleKernel
-
- clone() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- close() - Method in class edu.umd.cs.psl.application.inference.ConfidenceAnalysis
-
- close() - Method in class edu.umd.cs.psl.application.inference.LazyMPEInference
-
- close() - Method in class edu.umd.cs.psl.application.inference.MPEInference
-
- close() - Method in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- close() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
detaches all saved references
- close() - Method in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
- close() - Method in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
- close() - Method in interface edu.umd.cs.psl.application.ModelApplication
-
Releases all resources used by this ModelApplication.
- close() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- close() - Method in interface edu.umd.cs.psl.database.Database
-
- close() - Method in interface edu.umd.cs.psl.database.DataStore
-
Releases all resources and locks obtained by this DataStore.
- close() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- close() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- close() - Method in interface edu.umd.cs.psl.evaluation.resultui.printer.AtomPrintStream
-
- close() - Method in class edu.umd.cs.psl.evaluation.resultui.printer.DefaultAtomPrintStream
-
- close() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- close() - Method in class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
- close() - Method in class edu.umd.cs.psl.reasoner.bool.BooleanMaxWalkSat
-
- close() - Method in class edu.umd.cs.psl.reasoner.bool.BooleanMCSat
-
- close() - Method in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
- close() - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- close() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- close() - Method in interface edu.umd.cs.psl.reasoner.Reasoner
-
Releases all resources acquired by this Reasoner.
- close() - Method in class edu.umd.cs.psl.ui.experiment.report.ExperimentReport
-
- CLOSEBRACE - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- CLOSEBRACE - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- CLOSEBRACE() - Method in class edu.umd.cs.psl.parser.PSLParser.WeightContext
-
- CLOSEPAR - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- CLOSEPAR - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- ClosureStep - Interface in edu.umd.cs.psl.util.datasplitter.closurestep
-
The closure step follows the splitting step in the process of creating train/test splits.
- CmdDebugger - Class in edu.umd.cs.psl.evaluation.debug
-
- CmdDebugger(Database) - Constructor for class edu.umd.cs.psl.evaluation.debug.CmdDebugger
-
- coarseSizeThreshold(int) - Static method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- coefficients - Variable in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- coeffs - Variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner.Hyperplane
-
- collectSets(List<Collection<Partition>>) - Static method in class edu.umd.cs.psl.util.datasplitter.builddbstep.PartitionSetUtils
-
- collectVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
- collectVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.atom.QueryAtom
-
- collectVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- collectVariables(VariableTypeMap) - Method in interface edu.umd.cs.psl.model.formula.Formula
-
- collectVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.formula.Negation
-
- collectVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.formula.Rule
-
- COMMA - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- COMMA - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- COMMENT - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- COMMENT - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- commit(RandomVariableAtom) - Method in interface edu.umd.cs.psl.database.Database
-
Persists a RandomVariableAtom in this Database's write Partition.
- commit(RandomVariableAtom) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- commitToDB() - Method in class edu.umd.cs.psl.model.atom.RandomVariableAtom
-
- compare(Predicate) - Method in class edu.umd.cs.psl.evaluation.statistics.ContinuousPredictionComparator
-
For now, assumes the results DB has grounded all relevant instances of predicate p.
- compare(Predicate) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparator
-
Compares the baseline with te inferred result for a given predicate
DOES NOT check the baseline database for atoms.
- compare(Predicate, int) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparator
-
Compares the baseline with the inferred result for a given predicate.
- compare(Predicate, Map<GroundTerm, Integer>, int) - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionComparator
-
Returns prediction statistics in the form of a confusion matrix.
- compare(Predicate) - Method in interface edu.umd.cs.psl.evaluation.statistics.PredictionComparator
-
- compare(Predicate, int) - Method in interface edu.umd.cs.psl.evaluation.statistics.PredictionComparator
-
- compare(Predicate) - Method in interface edu.umd.cs.psl.evaluation.statistics.RankingComparator
-
- compare(Predicate) - Method in class edu.umd.cs.psl.evaluation.statistics.SimpleRankingComparator
-
- compareResults() - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullInferenceResult
-
- compareTo(GroundTerm) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueIntID
-
- compareTo(GroundTerm) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueStringID
-
- compareTo(GroundTerm) - Method in class edu.umd.cs.psl.model.argument.DateAttribute
-
- compareTo(GroundTerm) - Method in class edu.umd.cs.psl.model.argument.DoubleAttribute
-
- compareTo(GroundTerm) - Method in interface edu.umd.cs.psl.model.argument.GroundTerm
-
- compareTo(GroundTerm) - Method in class edu.umd.cs.psl.model.argument.IntegerAttribute
-
- compareTo(GroundTerm) - Method in class edu.umd.cs.psl.model.argument.LongAttribute
-
- compareTo(GroundTerm) - Method in class edu.umd.cs.psl.model.argument.StringAttribute
-
- CompatibilityAveragingRuleKernel - Class in edu.umd.cs.psl.model.kernel.rule
-
A CompatibilityRuleKernel for averaging conjunction rules.
- CompatibilityAveragingRuleKernel(AvgConjRule, double, boolean) - Constructor for class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- CompatibilityKernel - Interface in edu.umd.cs.psl.model.kernel
-
- CompatibilityKernel - Static variable in class edu.umd.cs.psl.util.collection.Filters
-
- CompatibilityRuleKernel - Class in edu.umd.cs.psl.model.kernel.rule
-
- CompatibilityRuleKernel(Formula, double, boolean) - Constructor for class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- CompletePartitioner - Interface in edu.umd.cs.psl.optimizer.conic.partition
-
- CompletePartitionerFactory - Interface in edu.umd.cs.psl.optimizer.conic.partition
-
- computeDegree(String) - Method in interface edu.umd.cs.psl.ui.data.graph.DegreeFunction
-
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.LazyMaxLikelihoodMPE
-
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxLikelihoodMPE
-
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Computes the expected incompatibility using the pseudolikelihood.
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Computes the expected incompatibility using the pseudolikelihood.
- computeExpectedIncomp() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Computes the expected incompatibility using the pseudolikelihood.
- computeIncompatibilities() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundIncompatibilityMetropolisRandOM
-
- computeIncompatibilities() - Method in class edu.umd.cs.psl.application.learning.weight.random.IncompatibilityMetropolisRandOM
-
- computeIncompatibilities() - Method in class edu.umd.cs.psl.application.learning.weight.random.IncompatibilitySliceRandOM
-
- computeLoss() - Method in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
- computeLoss() - Method in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
- computeLoss() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxLikelihoodMPE
-
- computeLoss() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Internal method for computing the loss at the current point
before taking a step.
- computeObservedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
Computes the expected ground truth incompatibility with respect to the mean field.
- computeObservedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
- computeObservedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
- computeObservedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.LazyMaxLikelihoodMPE
-
- computeObservedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxLikelihoodMPE
-
- computeObservedIncomp() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- computeRegularizer() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- computeScalingFactor() - Method in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
- computeScalingFactor() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.LazyMaxLikelihoodMPE
-
- computeScalingFactor() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Computes the amount to scale gradient for each rule
Scales by the number of groundings of each rule
unless the rule is not grounded in the training set, in which case
scales by 1.0
- computeValue(ReadOnlyDatabase, GroundTerm...) - Method in class edu.umd.cs.psl.model.predicate.ExternalFunctionalPredicate
-
- computeValue(ReadOnlyDatabase, GroundTerm...) - Method in class edu.umd.cs.psl.model.predicate.FunctionalPredicate
-
Computes the truth value of the
Atom
of this Predicate
with the given arguments.
- Cone - Class in edu.umd.cs.psl.optimizer.conic.program
-
- coneMap - Variable in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- coneMap - Variable in class edu.umd.cs.psl.optimizer.conic.partition.ObjectiveCoefficientPartitioner
-
- ConeType - Enum in edu.umd.cs.psl.optimizer.conic.program
-
- CONFIDENCE_COLUMN_DEFAULT - Static variable in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
Default value for the CONFIDENCE_COLUMN_KEY property
- CONFIDENCE_COLUMN_KEY - Static variable in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
Key for String property for the name of the confidence column in the database.
- ConfidenceAnalysis - Class in edu.umd.cs.psl.application.inference
-
- ConfidenceAnalysis(Model, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.inference.ConfidenceAnalysis
-
- confidenceColumn() - Method in interface edu.umd.cs.psl.database.rdbms.RDBMSPredicateHandle
-
- confidenceValue - Variable in class edu.umd.cs.psl.model.atom.GroundAtom
-
- ConfidenceValues - Class in edu.umd.cs.psl.model
-
Static methods related to valid range of confidence values.
- ConfidenceValues() - Constructor for class edu.umd.cs.psl.model.ConfidenceValues
-
- config - Variable in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.inference.ConfidenceAnalysis
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.inference.LazyMPEInference
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.inference.MPEInference
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.L1MaxMargin
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.random.UnforgivingGroundSliceRandOM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.ParallelPartitionedIPM
-
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMaxWalkSat
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMCSat
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
Prefix of property keys used by this class.
- CONFIG_PREFIX - Static variable in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
Prefix of property keys used by this class.
- ConfigBundle - Interface in edu.umd.cs.psl.config
-
Encapsulates a set of configuration properties organized by keys.
- ConfigManager - Class in edu.umd.cs.psl.config
-
- ConfusionMatrix - Class in edu.umd.cs.psl.evaluation.statistics
-
Confusion matrix data structure.
- ConfusionMatrix(int) - Constructor for class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Initializes an empty confusion matrix of size numClasses.
- ConfusionMatrix(int[][]) - Constructor for class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Initializes a confusion matrix from a 2D array of ints.
- ConfusionMatrix(ConfusionMatrix) - Constructor for class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Copy constructor.
- ConicProgram - Class in edu.umd.cs.psl.optimizer.conic.program
-
Stores information about the primal and dual forms of a conic program.
- ConicProgram() - Constructor for class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- ConicProgramEvent - Enum in edu.umd.cs.psl.optimizer.conic.program
-
- ConicProgramListener - Interface in edu.umd.cs.psl.optimizer.conic.program
-
- ConicProgramPartition - Class in edu.umd.cs.psl.optimizer.conic.partition
-
- ConicProgramPartition(ConicProgram, Collection<Set<Cone>>) - Constructor for class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- ConicProgramPartitionTest - Class in edu.umd.cs.psl.optimizer.conic.partition
-
- ConicProgramPartitionTest() - Constructor for class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartitionTest
-
- ConicProgramSolver - Interface in edu.umd.cs.psl.optimizer.conic
-
- ConicProgramSolverContractTest - Class in edu.umd.cs.psl.optimizer.conic
-
- ConicProgramSolverContractTest() - Constructor for class edu.umd.cs.psl.optimizer.conic.ConicProgramSolverContractTest
-
- ConicProgramSolverFactory - Interface in edu.umd.cs.psl.optimizer.conic
-
- ConicProgramTest - Class in edu.umd.cs.psl.optimizer.conic.program
-
- ConicProgramTest() - Constructor for class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
- ConicReasoner - Class in edu.umd.cs.psl.reasoner.conic
-
- ConicReasoner(ConfigBundle) - Constructor for class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
Constructs a ConicReasoner.
- ConicReasonerFactory - Class in edu.umd.cs.psl.reasoner.conic
-
- ConicReasonerFactory() - Constructor for class edu.umd.cs.psl.reasoner.conic.ConicReasonerFactory
-
- ConjugateGradient - Class in edu.umd.cs.psl.optimizer.conic.ipm.solver
-
Solves normal systems using a conjugate gradient method.
- ConjugateGradient(ConfigBundle) - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
- ConjugateGradientFactory - Class in edu.umd.cs.psl.optimizer.conic.ipm.solver
-
- ConjugateGradientFactory() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradientFactory
-
- ConjugateGradientIPM - Class in edu.umd.cs.psl.optimizer.conic.ipm.cg
-
Primal-dual short-step interior point method.
- ConjugateGradientIPM(ConfigBundle) - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
- ConjugateGradientIPMFactory - Class in edu.umd.cs.psl.optimizer.conic.ipm.cg
-
- ConjugateGradientIPMFactory() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPMFactory
-
- ConjugateGradientIPMTest - Class in edu.umd.cs.psl.optimizer.conic.ipm.cg
-
- ConjugateGradientIPMTest() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPMTest
-
- Conjunction - Class in edu.umd.cs.psl.model.formula
-
- Conjunction(Formula...) - Constructor for class edu.umd.cs.psl.model.formula.Conjunction
-
- conjunction(double, double) - Method in enum edu.umd.cs.psl.model.formula.Tnorm
-
- ConsideredEventTypeSet - Static variable in class edu.umd.cs.psl.model.atom.AtomEvent
-
- constant() - Method in class edu.umd.cs.psl.parser.PSLParser.ArgumentContext
-
- constant() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- constant - Variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner.Hyperplane
-
- ConstantAtomFunctionVariable - Class in edu.umd.cs.psl.reasoner.function
-
Encapsulates the value of a
GroundAtom
for use in numeric functions.
- ConstantAtomFunctionVariable(GroundAtom) - Constructor for class edu.umd.cs.psl.reasoner.function.ConstantAtomFunctionVariable
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateConstantSetOverlap
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetAverage
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetCrossEquality
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetInverseAverage
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetOverlap
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.EvidSetMin
-
- constantFactor(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.SetMin
-
- ConstantMembership<A> - Class in edu.umd.cs.psl.model.set.membership
-
- ConstantMembership() - Constructor for class edu.umd.cs.psl.model.set.membership.ConstantMembership
-
- ConstantNumber - Class in edu.umd.cs.psl.reasoner.function
-
- ConstantNumber(double) - Constructor for class edu.umd.cs.psl.reasoner.function.ConstantNumber
-
- ConstantOneNodeWeighter - Class in edu.umd.cs.psl.util.graph.weight
-
- ConstantOneNodeWeighter() - Constructor for class edu.umd.cs.psl.util.graph.weight.ConstantOneNodeWeighter
-
- ConstantSetTerm - Class in edu.umd.cs.psl.model.set.term
-
- ConstantSetTerm(GroundTerm) - Constructor for class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- ConstantTermMembership - Class in edu.umd.cs.psl.model.set.membership
-
- ConstantTermMembership() - Constructor for class edu.umd.cs.psl.model.set.membership.ConstantTermMembership
-
- CONSTRAINT - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- CONSTRAINT - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- constraint() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- CONSTRAINT() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintContext
-
- constraint(int) - Method in class edu.umd.cs.psl.parser.PSLParser.ProgramContext
-
- constraint() - Method in class edu.umd.cs.psl.parser.PSLParser.ProgramContext
-
- CONSTRAINT() - Method in class edu.umd.cs.psl.parser.PSLParser.WeightContext
-
- CONSTRAINT_TOLERANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Default value for CONSTRAINT_TOLERANCE
- CONSTRAINT_TOLERANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Default value for CONSTRAINT_TOLERANCE
- CONSTRAINT_TOLERANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Default value for CONSTRAINT_TOLERANCE
- CONSTRAINT_TOLERANCE_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Key for constraint violation tolerance
- CONSTRAINT_TOLERANCE_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Key for constraint violation tolerance
- CONSTRAINT_TOLERANCE_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Key for constraint violation tolerance
- ConstraintBlocker - Class in edu.umd.cs.psl.util.model
-
- ConstraintBlocker(GroundKernelStore) - Constructor for class edu.umd.cs.psl.util.model.ConstraintBlocker
-
- ConstraintKernel - Interface in edu.umd.cs.psl.model.kernel
-
- ConstraintKernel - Static variable in class edu.umd.cs.psl.util.collection.Filters
-
- ConstraintRuleKernel - Class in edu.umd.cs.psl.model.kernel.rule
-
- ConstraintRuleKernel(Formula) - Constructor for class edu.umd.cs.psl.model.kernel.rule.ConstraintRuleKernel
-
- ConstraintTerm - Class in edu.umd.cs.psl.reasoner.function
-
A numeric constraint.
- ConstraintTerm(FunctionTerm, FunctionComparator, double) - Constructor for class edu.umd.cs.psl.reasoner.function.ConstraintTerm
-
- constraintType() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintContext
-
- constraintType() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- contains(Object) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- containsAll(Collection<?>) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- containsEntity(Entity<ET, RT>) - Method in class edu.umd.cs.psl.ui.data.graph.Subgraph
-
- containsGroundKernel(GroundKernel) - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
Checks whether a GroundKernel is in this store.
- containsGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- containsGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- containsGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- containsGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- ContinuousPredictionComparator - Class in edu.umd.cs.psl.evaluation.statistics
-
- ContinuousPredictionComparator(Database) - Constructor for class edu.umd.cs.psl.evaluation.statistics.ContinuousPredictionComparator
-
- ContinuousPredictionComparator.Metric - Enum in edu.umd.cs.psl.evaluation.statistics
-
- convertArguments(Database, Predicate, Object...) - Static method in class edu.umd.cs.psl.util.database.Queries
-
Converts raw arguments to
Terms
that fit a given Predicate.
- ConvexFunc - Interface in edu.umd.cs.psl.optimizer.lbfgs
-
User: Stanley Kok
Date: 12/20/10
Time: 7:08 PM
- copy() - Method in class edu.umd.cs.psl.model.atom.VariableAssignment
-
Returns a shallow copy.
- copyAssign(Variable, GroundTerm) - Method in class edu.umd.cs.psl.model.atom.VariableAssignment
-
Assigns the given variable/ground term pair to a copy of this variable assignment.
- CosineSimilarity - Class in edu.umd.cs.psl.ui.functions.textsimilarity
-
- CosineSimilarity() - Constructor for class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- CosineSimilarity(double) - Constructor for class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- cosineSimilarity(CosineSimilarity.WordVector, CosineSimilarity.WordVector) - Static method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- CosineSimilarity.WordVector - Class in edu.umd.cs.psl.ui.functions.textsimilarity
-
- CosineSimilarity.WordVector() - Constructor for class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity.WordVector
-
- count() - Method in class edu.umd.cs.psl.model.set.membership.ConstantMembership
-
- count() - Method in interface edu.umd.cs.psl.model.set.membership.Membership
-
- count() - Method in class edu.umd.cs.psl.model.set.membership.SoftMembership
-
- CPS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
Default value for CPS_KEY property.
- CPS_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
Default value for CPS_KEY property.
- CPS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
- CPS_KEY - Static variable in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
Key for
Factory
or String property.
- cpuTime() - Method in class edu.umd.cs.psl.optimizer.lbfgs.Timer
-
Returns CPU time in nanoseconds.
- create(String[]) - Method in interface edu.umd.cs.psl.ui.data.file.util.DelimitedObjectConstructor
-
- create(String[]) - Method in class edu.umd.cs.psl.ui.data.file.util.ListIntegerConstructor
-
- createCoarseGraph(Graph, Iterable<SuperNode>, Map<Node, SuperNode>, RelationshipWeighter) - Static method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- createConstraint() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- createEntity(int, ET) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- createFunctionalPredicate(String, ExternalFunction) - Method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
Constructs an ExternalFunctionalPredicate.
- createHashIndex(String, String, String) - Method in interface edu.umd.cs.psl.database.rdbms.driver.DatabaseDriver
-
Template for hash index creation for different drivers.
- createHashIndex(String, String, String) - Method in class edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver
-
- createHashIndex(String, String, String) - Method in class edu.umd.cs.psl.database.rdbms.driver.MySQLDriver
-
Create a full length hash index on the given column@table using the index_name.
- createNode() - Method in interface edu.umd.cs.psl.util.graph.Graph
-
- createNode() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryGraph
-
- createNonNegativeOrthantCone() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- createPrimaryKey(String, String) - Method in interface edu.umd.cs.psl.database.rdbms.driver.DatabaseDriver
-
Primary key creation syntax is not friendly in JDBC.
- createPrimaryKey(String, String) - Method in class edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver
-
- createPrimaryKey(String, String) - Method in class edu.umd.cs.psl.database.rdbms.driver.MySQLDriver
-
Create primary key clause
For more information see: http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
- createProperty(String, Object) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- createProperty(String, Object) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- createProperty(String, Object) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- createPropertyType(String, Class<?>) - Method in interface edu.umd.cs.psl.util.graph.Graph
-
- createPropertyType(String, Class<?>) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryGraph
-
- createRelationship(String, Node) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- createRelationship(String, Node) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- createRelationship(String, Node) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- createRelationshipType(String) - Method in interface edu.umd.cs.psl.util.graph.Graph
-
- createRelationshipType(String) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryGraph
-
- createRotatedSecondOrderCone(int) - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- createSecondOrderCone(int) - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- createStandardPredicate(String, ArgumentType...) - Method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
Constructs a StandardPredicate.
- createTerm(GroundKernel) - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LatentTopicNetworkADMMReasoner
-
- createTerm(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- cumulativeGroundings - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- cumulativeGroundings - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- current - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- current - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- currentProgram - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- currentPt - Variable in class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- currentWeights - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- currentWeights - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- currentWeights - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- currentWeights - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- cutRows - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- CUTTING_PLANE_TOLERANCE - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Key for cutting plane tolerance
- CUTTING_PLANE_TOLERANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Default value for CUTTING_PLANE_TOLERANCE_KEY
- CUTTING_PLANE_TOLERANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Default value for CUTTING_PLANE_TOLERANCE
- CUTTING_PLANE_TOLERANCE_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Key for double property, cutting plane tolerance
- GAP_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Default value for GAP_THRESHOLD_KEY property.
- GAP_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Key for double property.
- get(int, Variable) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- get(int) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- get(int, Variable) - Method in interface edu.umd.cs.psl.database.ResultList
-
Returns a substitution for a single
Variable
- get(int) - Method in interface edu.umd.cs.psl.database.ResultList
-
- get(int, int) - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Get entry (i,j).
- get(int) - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- get(int) - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
Returns a function in the MaxFunction's set.
- get(int) - Method in class edu.umd.cs.psl.ui.data.graph.BinaryRelation
-
- get(int) - Method in class edu.umd.cs.psl.ui.data.graph.Relation
-
- get(String) - Method in class edu.umd.cs.psl.ui.loading.DataStoreInserterLookup
-
- get(String) - Method in interface edu.umd.cs.psl.ui.loading.InserterLookup
-
- get(String) - Method in class edu.umd.cs.psl.ui.loading.InserterLookupMap
-
- get(int) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- get() - Method in class edu.umd.cs.psl.util.concurrent.AtomicDouble
-
- get1DViewsByInnerConstraints(DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- get1DViewsByVars(DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- getA() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getAccuracy() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getAccuracy() - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
Returns the total number of errors.
- getACopies() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- getAggregateValue() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- getAggregator() - Method in enum edu.umd.cs.psl.groovy.SetComparison
-
- getAggregator() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- getAllAtoms(Database, Predicate) - Static method in class edu.umd.cs.psl.util.database.Queries
-
Returns all GroundAtoms of a Predicate persisted in a Database.
- getAllRelations() - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- getAllRelations(Subgraph<ET, RT>) - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- getAllVariablesBound() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis.DNFClause
-
Returns whether all Variables in the clause appear at least once in a
positive literal with a
StandardPredicate
.
- getAnchorVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- getAnchorVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.set.term.FormulaSetTerm
-
- getAnchorVariables(VariableTypeMap) - Method in interface edu.umd.cs.psl.model.set.term.SetTerm
-
- getAnchorVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.set.term.SetUnion
-
- getAnchorVariables(VariableTypeMap) - Method in class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- getArgs() - Method in class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
- getArgs() - Method in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
- getArgs() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getArguments() - Method in class edu.umd.cs.psl.model.atom.Atom
-
Returns the arguments associated with this atom.
- getArguments() - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
- getArgumentType(int) - Method in class edu.umd.cs.psl.model.predicate.Predicate
-
Returns the ArgumentType which a
Term
must have to be a valid
argument for a particular argument position of this Predicate.
- getArgumentTypes() - Method in interface edu.umd.cs.psl.model.function.ExternalFunction
-
- getArgumentTypes() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- getArgumentTypes() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.DiceSimilarity
-
- getArgumentTypes() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.LevenshteinSimilarity
-
- getArgumentTypes() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.SubStringSimilarity
-
- getArity() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- getArity() - Method in interface edu.umd.cs.psl.database.ResultList
-
- getArity() - Method in class edu.umd.cs.psl.model.atom.Atom
-
Returns the number of arguments to the associated predicate.
- getArity() - Method in interface edu.umd.cs.psl.model.function.ExternalFunction
-
- getArity() - Method in class edu.umd.cs.psl.model.predicate.Predicate
-
Returns the number of
Terms
that are related when using
this Predicate.
- getArity() - Method in class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- getArity() - Method in class edu.umd.cs.psl.model.set.term.FormulaSetTerm
-
- getArity() - Method in interface edu.umd.cs.psl.model.set.term.SetTerm
-
Returns the arity of the tuples contained in this set.
- getArity() - Method in class edu.umd.cs.psl.model.set.term.SetUnion
-
- getArity() - Method in class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- getArity() - Method in class edu.umd.cs.psl.ui.data.graph.BinaryRelation
-
- getArity() - Method in class edu.umd.cs.psl.ui.data.graph.Relation
-
- getArity() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- getArity() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.DiceSimilarity
-
- getArity() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.LevenshteinSimilarity
-
- getArity() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.SubStringSimilarity
-
- getATN() - Method in class edu.umd.cs.psl.parser.PSLLexer
-
- getATN() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- getAtom() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- getAtom(Predicate, GroundTerm...) - Method in class edu.umd.cs.psl.application.learning.weight.TrainingMap
-
- getAtom(Predicate, GroundTerm...) - Method in interface edu.umd.cs.psl.database.Database
-
Returns the GroundAtom for the given Predicate and GroundTerms.
- getAtom(Predicate, GroundTerm...) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- getAtom(Predicate, GroundTerm...) - Method in class edu.umd.cs.psl.database.ReadOnlyDatabase
-
- getAtom() - Method in class edu.umd.cs.psl.model.atom.AtomEvent
-
- getAtom(Predicate, GroundTerm...) - Method in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
- getAtom(Predicate, GroundTerm...) - Method in interface edu.umd.cs.psl.model.atom.AtomManager
-
Returns the GroundAtom for the given Predicate and GroundTerms.
- getAtom(Predicate, GroundTerm...) - Method in class edu.umd.cs.psl.model.atom.PersistedAtomManager
-
- getAtom(Predicate, GroundTerm...) - Method in class edu.umd.cs.psl.model.atom.SimpleAtomManager
-
- getAtom() - Method in class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- getAtomCache() - Method in interface edu.umd.cs.psl.database.Database
-
- getAtomCache() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- getAtoms() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- getAtoms() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- getAtoms(Set<Atom>) - Method in class edu.umd.cs.psl.model.atom.Atom
-
- getAtoms(Set<Atom>) - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- getAtoms(Set<Atom>) - Method in interface edu.umd.cs.psl.model.formula.Formula
-
- getAtoms(Set<Atom>) - Method in class edu.umd.cs.psl.model.formula.Negation
-
- getAtoms(Set<Atom>) - Method in class edu.umd.cs.psl.model.formula.Rule
-
- getAtoms() - Method in interface edu.umd.cs.psl.model.kernel.GroundKernel
-
- getAtoms() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundLinearConstraint
-
- getAtoms() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundValueConstraint
-
- getAtoms() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundDomainRangeConstraint
-
- getAtoms() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundSymmetryConstraint
-
- getAtoms() - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractGroundRule
-
- getAtoms() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundEmptySetDefinition
-
- getAtoms() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- getAttribute(String, Class<O>) - Method in class edu.umd.cs.psl.ui.data.graph.HasAttributes
-
- getAttribute(String) - Method in class edu.umd.cs.psl.ui.data.graph.HasAttributes
-
- getAttribute(String) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getAttribute(String, Class<O>) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getAttribute() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- getAttribute(Class<O>) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- getAttribute(String) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getAttribute(String, Class<O>) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getAttribute() - Method in interface edu.umd.cs.psl.util.graph.Property
-
- getAttribute(Class<O>) - Method in interface edu.umd.cs.psl.util.graph.Property
-
- getAugmentedLagrangianPenalty() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getAverage(Kernel) - Method in class edu.umd.cs.psl.sampler.DerivativeSampler
-
- getB() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getBalanceExponent() - Method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- getBasicTerms() - Method in class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- getBasicTerms() - Method in class edu.umd.cs.psl.model.set.term.FormulaSetTerm
-
- getBasicTerms() - Method in interface edu.umd.cs.psl.model.set.term.SetTerm
-
- getBasicTerms() - Method in class edu.umd.cs.psl.model.set.term.SetUnion
-
- getBasicTerms() - Method in class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- getBigDecimal(String, BigDecimal) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
BigDecimal
associated with the given configuration key.
- getBigDecimal(String, BigDecimal) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getBigInteger(String, BigInteger) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
BigInteger
associated with the given configuration key.
- getBigInteger(String, BigInteger) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- getBinding(Atom) - Method in interface edu.umd.cs.psl.model.kernel.GroundKernel
-
Something about whether GroundAtoms can be removed from this GroundKernel
if they have truth value of 0.0...
- getBinding(Atom) - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundLinearConstraint
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundValueConstraint
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundDomainRangeConstraint
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundSymmetryConstraint
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractGroundRule
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundEmptySetDefinition
-
- getBinding(Atom) - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- getBody() - Method in class edu.umd.cs.psl.model.formula.Rule
-
- getBoolean(String, boolean) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a boolean associated with the given configuration key.
- getBoolean(String, Boolean) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
Boolean
associated with the given configuration key.
- getBoolean(String, Boolean) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getBoolean(String, boolean) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getBundle(String) - Method in class edu.umd.cs.psl.config.ConfigManager
-
- getByte(String, byte) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a byte associated with the given configuration key.
- getByte(String, Byte) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
Byte
associated with the given configuration key.
- getByte(String, byte) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getByte(String, Byte) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getC() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getCachedAtom(QueryAtom) - Method in class edu.umd.cs.psl.model.atom.AtomCache
-
Checks whether a
GroundAtom
matching a QueryAtom exists in the
cache and returns it if so.
- getCachedAtoms() - Method in class edu.umd.cs.psl.model.atom.AtomCache
-
- getCachedAtoms(Predicate) - Method in class edu.umd.cs.psl.model.atom.AtomCache
-
Returns all GroundAtoms in this AtomCache with a given Predicate.
- getCachedObservedAtoms() - Method in class edu.umd.cs.psl.model.atom.AtomCache
-
- getCachedRandomVariableAtoms() - Method in class edu.umd.cs.psl.model.atom.AtomCache
-
- getCoefficient() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSummand
-
- getCoefficientsArray() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.LDAgroundLogLoss
-
- getComparator() - Method in class edu.umd.cs.psl.reasoner.function.ConstraintTerm
-
- getCompatibilityKernels() - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
- getCompatibilityKernels() - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- getCompatibilityKernels() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getCompatibilityKernels() - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- getCompatibilityKernels() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getCone() - Method in class edu.umd.cs.psl.optimizer.conic.program.Variable
-
- getCones() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getConeTypes() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getConfidence() - Method in class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- getConfidence() - Method in interface edu.umd.cs.psl.reasoner.function.FunctionVariable
-
Returns a confidence value associated with the variable.
- getConfidenceValue() - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
- getConfusionMatrix() - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
Returns a clone (deep copy) of the confusion matrix.
- getConicProgramSolver(ConfigBundle) - Method in interface edu.umd.cs.psl.optimizer.conic.ConicProgramSolverFactory
-
- getConicProgramSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPMFactory
-
- getConicProgramSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPMFactory
-
- getConicProgramSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPMFactory
-
- getConicProgramSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.ParallelPartitionedIPMFactory
-
- getConicProgramSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.PartitionedIPMFactory
-
- getConicProgramSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEKFactory
-
- getConicProgramSolverImplementations() - Method in class edu.umd.cs.psl.optimizer.conic.ConicProgramSolverContractTest
-
- getConicProgramSolverImplementations() - Method in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPMTest
-
- getConicProgramSolverImplementations() - Method in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPMTest
-
- getConicProgramSolverImplementations() - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPMTest
-
- getConnection() - Method in interface edu.umd.cs.psl.database.rdbms.driver.DatabaseDriver
-
Returns a connection to the database.
- getConnection() - Method in class edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver
-
- getConnection() - Method in class edu.umd.cs.psl.database.rdbms.driver.MySQLDriver
-
- getConsensusVariableValue(int) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getConstrainedValue() - Method in class edu.umd.cs.psl.optimizer.conic.program.LinearConstraint
-
- getConstraintDefinition() - Method in interface edu.umd.cs.psl.model.kernel.GroundConstraintKernel
-
- getConstraintDefinition() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundLinearConstraint
-
- getConstraintDefinition() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundValueConstraint
-
- getConstraintDefinition() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundDomainRangeConstraint
-
- getConstraintDefinition() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundSymmetryConstraint
-
- getConstraintDefinition() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundConstraintRule
-
- getConstraintDefinition() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundEmptySetDefinition
-
- getConstraintDefinition() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- getConstraintKernels() - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
- getConstraintKernels() - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- getConstraintKernels() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getConstraintKernels() - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- getConstraintKernels() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getConstraints() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getConstraintType() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintKernel
-
- getCoreObjectiveFunction(FunctionTerm) - Static method in class edu.umd.cs.psl.reasoner.function.util.FunctionAnalyser
-
Extracts a function from a
MaxFunction
additionally containing
only the constant value zero.
- getCorrectAtoms() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getCutConstraints() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- getDatabase(Partition, Partition...) - Method in interface edu.umd.cs.psl.database.DataStore
-
Creates a Database that can read from and write to a
Partition
and
optionally read from additional Partitions.
- getDatabase(Partition, Set<StandardPredicate>, Partition...) - Method in interface edu.umd.cs.psl.database.DataStore
-
Creates a Database that can read from and write to a
Partition
and
optionally read from additional Partitions.
- getDatabase(Partition, Partition...) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- getDatabase(Partition, Set<StandardPredicate>, Partition...) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- getDatabaseDefinitions(Database, List<Collection<Partition>>) - Method in interface edu.umd.cs.psl.util.datasplitter.builddbstep.BuildDBStep
-
- getDatabaseDefinitions(Database, List<Collection<Partition>>) - Method in class edu.umd.cs.psl.util.datasplitter.builddbstep.QueryAtomsBuildDBStep
-
- getDatabaseDefinitions(Database, List<Collection<Partition>>) - Method in class edu.umd.cs.psl.util.datasplitter.builddbstep.SimpleBuildDBStep
-
- getDatabaseID(RDBMSDatabase) - Static method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
Registers and returns an ID for a given RDBMSDatabase.
- getDataIDs() - Method in interface edu.umd.cs.psl.ui.experiment.folds.SingleLoader
-
- getDataStore() - Method in interface edu.umd.cs.psl.database.Database
-
- getDataStore() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- getDataStore() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- getDataStore() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStoreTest
-
- getDBDefinition() - Method in class edu.umd.cs.psl.util.datasplitter.ExperimentTree
-
- getDegree(A) - Method in class edu.umd.cs.psl.model.set.membership.ConstantMembership
-
- getDegree(A) - Method in interface edu.umd.cs.psl.model.set.membership.Membership
-
- getDegree(A) - Method in class edu.umd.cs.psl.model.set.membership.SoftMembership
-
- getDegree() - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- getDiskDatabase(String) - Method in class edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver
-
- getDistribution() - Method in interface edu.umd.cs.psl.evaluation.result.FullConfidenceAnalysisResult
-
- getDistribution() - Method in class edu.umd.cs.psl.evaluation.result.memory.MemoryFullConfidenceAnalysisResult
-
- getDistribution() - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullConfidenceAnalysisResult
-
- getDistribution(AtomFunctionVariable) - Method in class edu.umd.cs.psl.sampler.MarginalSampler
-
- getDistributions() - Method in class edu.umd.cs.psl.sampler.MarginalSampler
-
- getDNF() - Method in class edu.umd.cs.psl.model.atom.Atom
-
- getDNF() - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- getDNF() - Method in class edu.umd.cs.psl.model.formula.AvgConjunction
-
- getDNF() - Method in class edu.umd.cs.psl.model.formula.Conjunction
-
- getDNF() - Method in class edu.umd.cs.psl.model.formula.Disjunction
-
- getDNF() - Method in interface edu.umd.cs.psl.model.formula.Formula
-
- getDNF() - Method in class edu.umd.cs.psl.model.formula.Negation
-
- getDNF() - Method in class edu.umd.cs.psl.model.formula.Rule
-
- getDNFClause(int) - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis
-
Returns the specified clause of the Formula after it has been converted
to Disjunctive Normal Form.
- getDouble(String, double) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a double associated with the given configuration key.
- getDouble(String, Double) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
Double
associated with the given configuration key.
- getDouble(String, Double) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getDouble(String, double) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getDualIncompatibility(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Computes the incompatibility of the local variable copies corresponding to
GroundKernel gk
- getDualInfeasibility() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getDualInfeasibility(boolean) - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getDualProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.Dualizer
-
- getDualValue() - Method in class edu.umd.cs.psl.optimizer.conic.program.Variable
-
- getEdgeIterator() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getEdgeIterator() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getEdges() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getEdges() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getElement(Cone) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- getEmptyDouble2DArray() - Method in class edu.umd.cs.psl.util.model.ConstraintBlocker
-
- getEnd() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- getEnd() - Method in interface edu.umd.cs.psl.util.graph.Relationship
-
- getEntities(ET) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- getEntities(ET) - Method in class edu.umd.cs.psl.ui.data.graph.Subgraph
-
- getEntity(int, ET) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- getEnum(String, Enum<?>) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Returns an enum associated with the given configuration key.
- getEnum(String, Enum<?>) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getEpsilonAbs() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getEpsilonRel() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getError() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getError() - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
- getError() - Method in interface edu.umd.cs.psl.evaluation.statistics.PredictionStatistics
-
- getErrors() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getEventFramework() - Method in class edu.umd.cs.psl.model.atom.AtomEvent
-
- getExactlyOne() - Method in class edu.umd.cs.psl.util.model.ConstraintBlocker
-
- getExpectedTotalWeightedCompatibility(Iterable<GroundCompatibilityKernel>) - Static method in class edu.umd.cs.psl.application.util.GroundKernels
-
Computes the expected total weighted compatibility (1 - incompatibility)
of an iterable container of
GroundCompatibilityKernels
from independently rounding each
RandomVariableAtom
to 1.0 or 0.0
with probability equal to its current truth value.
- getExpectedTotalWeightedIncompatibility(Iterable<GroundCompatibilityKernel>) - Static method in class edu.umd.cs.psl.application.util.GroundKernels
-
Computes the expected total weighted incompatibility of an iterable
container of
GroundCompatibilityKernels
from independently rounding each
RandomVariableAtom
to 1.0 or 0.0
with probability equal to its current truth value.
- getExpectedWeightedCompatibility(GroundCompatibilityKernel) - Static method in class edu.umd.cs.psl.application.util.GroundKernels
-
- getExternalFunction() - Method in class edu.umd.cs.psl.model.predicate.ExternalFunctionalPredicate
-
Returns the ExternalFunction this predicate uses to compute truth values.
- getF1(DiscretePredictionStatistics.BinaryClass) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getF1() - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
Returns the overall F1, computed as the weighted average of the per-class F1 scores.
- getF1(int) - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
Returns the per-class F1.
- getFactory(String, Factory) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Gets a
Factory
associated with the given configuration key.
- getFactory(String, Factory) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getFactory() - Static method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
- getFalseNegatives() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getFalsePositives() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getFirst() - Method in class edu.umd.cs.psl.ui.data.graph.BinaryRelation
-
- getFloat(String, float) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a float associated with the given configuration key.
- getFloat(String, Float) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
Float
associated with the given configuration key.
- getFloat(String, float) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getFloat(String, Float) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getFormula() - Method in class edu.umd.cs.psl.database.DatabaseQuery
-
- getFormula() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis
-
- getFormula() - Method in class edu.umd.cs.psl.model.formula.Negation
-
- getFormula() - Method in interface edu.umd.cs.psl.model.set.term.BasicSetTerm
-
- getFormula() - Method in class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- getFormula() - Method in class edu.umd.cs.psl.model.set.term.FormulaSetTerm
-
- getFormula() - Method in class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- getFunction() - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractGroundRule
-
- getFunction() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundWeightedCompatibilityRule
-
- getFunction() - Method in class edu.umd.cs.psl.reasoner.function.ConstraintTerm
-
- getFunctionalAtoms() - Method in class edu.umd.cs.psl.database.rdbms.Formula2SQL
-
- getFunctionalPredicates() - Method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
- getFunctionDefinition() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- getFunctionDefinition() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- getFunctionDefinition() - Method in interface edu.umd.cs.psl.model.kernel.GroundCompatibilityKernel
-
- getFunctionDefinition() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundCompatibilityRule
-
- getGrammarFileName() - Method in class edu.umd.cs.psl.parser.PSLLexer
-
- getGrammarFileName() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- getGraphImplementation() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
- getGraphImplementation() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryGraphTest
-
- getGreater() - Method in class edu.umd.cs.psl.util.collection.QuickSelector
-
- getGroundKernel(GroundKernel) - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
Retrieves the GroundKernel equal to a given one from this store.
- getGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- getGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- getGroundKernel(GroundKernel) - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getGroundKernels() - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
- getGroundKernels(Kernel) - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
Returns every GroundKernel that was instantiated by a given Kernel.
- getGroundKernels() - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- getGroundKernels(Kernel) - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- getGroundKernels() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getGroundKernels(Kernel) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getGroundKernels() - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- getGroundKernels(Kernel) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- getGroundKernels() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getGroundKernels(Kernel) - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getGroundTruthIDs() - Method in interface edu.umd.cs.psl.ui.experiment.folds.SingleLoader
-
- getHandle(Predicate) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
Helper method for getting a predicate handle
- getHead() - Method in class edu.umd.cs.psl.model.formula.Rule
-
- getHistogram(AtomFunctionVariable, int) - Method in interface edu.umd.cs.psl.evaluation.result.FullConfidenceAnalysisResult
-
- getHistogram(AtomFunctionVariable, int) - Method in class edu.umd.cs.psl.evaluation.result.memory.MemoryFullConfidenceAnalysisResult
-
- getHistogram(AtomFunctionVariable, int) - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullConfidenceAnalysisResult
-
- getID() - Method in class edu.umd.cs.psl.database.Partition
-
- getID() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueIntID
-
- getID() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueStringID
-
- getId() - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- getIncidentGKs() - Method in class edu.umd.cs.psl.util.model.ConstraintBlocker
-
- getIncompatibility() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- getIncompatibility() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- getIncompatibility() - Method in interface edu.umd.cs.psl.model.kernel.GroundCompatibilityKernel
-
Returns the incompatibility of the truth values of this GroundKernel's
GroundAtoms
.
- getIncompatibility() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundCompatibilityRule
-
- getIndex(Variable) - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getIndex(LinearConstraint) - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getIndex(AtomFunctionVariable) - Method in class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- getInfeasibility() - Method in interface edu.umd.cs.psl.model.kernel.GroundConstraintKernel
-
Returns the infeasibility of the truth values of this GroundKernel's
GroundAtoms
.
- getInfeasibility() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundLinearConstraint
-
- getInfeasibility() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundValueConstraint
-
- getInfeasibility() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundDomainRangeConstraint
-
- getInfeasibility() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundSymmetryConstraint
-
- getInfeasibility() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundConstraintRule
-
- getInfeasibility() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundEmptySetDefinition
-
- getInfeasibility() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- getInfeasibilityNorm(Iterable<GroundConstraintKernel>) - Static method in class edu.umd.cs.psl.application.util.GroundKernels
-
- getInfeasibilityNorm() - Method in interface edu.umd.cs.psl.evaluation.result.FullInferenceResult
-
- getInfeasibilityNorm() - Method in class edu.umd.cs.psl.evaluation.result.memory.MemoryFullInferenceResult
-
- getInfeasibilityNorm() - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullInferenceResult
-
- getInnerACopies() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- getInnerFunction() - Method in class edu.umd.cs.psl.reasoner.function.PowerOfTwo
-
- getInnerVariables() - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- getInserter(StandardPredicate, Partition) - Method in interface edu.umd.cs.psl.database.DataStore
-
- getInserter(Predicate, Partition) - Method in interface edu.umd.cs.psl.database.loading.DataLoader
-
- getInserter(Predicate, Partition) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataLoader
-
- getInserter(StandardPredicate, Partition) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- getInt(String, int) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a int associated with the given configuration key.
- getInt(String, int) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getInteger(String, Integer) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get an
Integer
associated with the given configuration key.
- getInteger(String, Integer) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getInternalID() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueIntID
-
- getInternalID() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueStringID
-
- getInternalID() - Method in interface edu.umd.cs.psl.model.argument.UniqueID
-
- getKernel() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- getKernel() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- getKernel() - Method in interface edu.umd.cs.psl.model.kernel.GroundCompatibilityKernel
-
- getKernel() - Method in interface edu.umd.cs.psl.model.kernel.GroundConstraintKernel
-
- getKernel() - Method in interface edu.umd.cs.psl.model.kernel.GroundKernel
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundLinearConstraint
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.linearconstraint.GroundValueConstraint
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundDomainRangeConstraint
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundSymmetryConstraint
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundCompatibilityRule
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundConstraintRule
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundEmptySetDefinition
-
- getKernel() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- getKernel() - Method in class edu.umd.cs.psl.model.ModelEvent
-
- getKernels() - Method in class edu.umd.cs.psl.model.Model
-
- getKLDivergence() - Method in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
Computes the KL divergence from the mean field to the distribution p(Z|X,Y),
minus a constant (the log partition function plus some constant potentials).
- getLagrange() - Method in class edu.umd.cs.psl.optimizer.conic.program.LinearConstraint
-
- getLagrangianPenalty() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getLatentVariables() - Method in class edu.umd.cs.psl.application.learning.weight.TrainingMap
-
Gets the set of latent variables created by the constructor.
- getLcMap() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getLeaf() - Method in interface edu.umd.cs.psl.model.set.term.BasicSetTerm
-
- getLeaf() - Method in class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- getLeaf() - Method in class edu.umd.cs.psl.model.set.term.FormulaSetTerm
-
- getLeaf() - Method in class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- getLeafType() - Method in class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- getLeafType() - Method in class edu.umd.cs.psl.model.set.term.FormulaSetTerm
-
- getLeafType() - Method in interface edu.umd.cs.psl.model.set.term.SetTerm
-
- getLeafType() - Method in class edu.umd.cs.psl.model.set.term.SetUnion
-
- getLeafType() - Method in class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- getLess() - Method in class edu.umd.cs.psl.util.collection.QuickSelector
-
- getLinearConstraints() - Method in class edu.umd.cs.psl.optimizer.conic.program.Variable
-
- getList(String, List<String>) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a List of strings associated with the given configuration key.
- getList(String, List<String>) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getLocalIndex() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner.VariableLocation
-
- getLogLikelihoodObservations() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundIncompatibilityMetropolisRandOM
-
- getLogLikelihoodObservations() - Method in class edu.umd.cs.psl.application.learning.weight.random.IncompatibilityMetropolisRandOM
-
- getLogLikelihoodObservations() - Method in class edu.umd.cs.psl.application.learning.weight.random.IncompatibilitySliceRandOM
-
- getLogLikelihoodObservations() - Method in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- getLogLikelihoodObservations() - Method in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- getLogLikelihoodObservations() - Method in class edu.umd.cs.psl.application.learning.weight.random.UnforgivingGroundSliceRandOM
-
- getLogLikelihoodSampledWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- getLogLikelihoodSampledWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- getLogLikelihoodSampledWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- getLogLikelihoodSampledWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- getLogLikelihoodSampledWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- getLogLikelihoodSampledWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- getLogProbability() - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullInferenceResult
-
- getLong(String, long) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a long associated with the given configuration key.
- getLong(String, Long) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
Long
associated with the given configuration key.
- getLong(String, long) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getLong(String, Long) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getLoss() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- getManager() - Static method in class edu.umd.cs.psl.config.ConfigManager
-
- getMax() - Static method in class edu.umd.cs.psl.model.ConfidenceValues
-
- getMaxIter() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- getMaxStep(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.Cone
-
- getMaxStep(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.NonNegativeOrthantCone
-
- getMaxStep(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- getMaxStep(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- getMaxWordIndex() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity.WordVector
-
- getMemoryDatabase(String) - Method in class edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver
-
- getMin() - Static method in class edu.umd.cs.psl.model.ConfidenceValues
-
- getModel() - Method in class edu.umd.cs.psl.model.ModelEvent
-
- getModel() - Method in class edu.umd.cs.psl.parser.PSLModelLoader
-
- getModelFileName() - Method in class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
- getModelFileName() - Method in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
- getModelFileName() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getModeNames() - Method in class edu.umd.cs.psl.parser.PSLLexer
-
- getN() - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- getN() - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- getName() - Method in enum edu.umd.cs.psl.model.argument.ArgumentType
-
- getName() - Method in class edu.umd.cs.psl.model.argument.Variable
-
- getName() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- getName() - Method in class edu.umd.cs.psl.model.predicate.Predicate
-
Returns the name of this Predicate.
- getName() - Method in interface edu.umd.cs.psl.model.set.aggregator.AggregatorFunction
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.AggregateConstantSetOverlap
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetAverage
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetCrossEquality
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetInverseAverage
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetOverlap
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.EvidSetMin
-
- getName() - Method in class edu.umd.cs.psl.ui.aggregators.SetMin
-
- getNegLiterals() - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- getNegLiterals() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis.DNFClause
-
- getNegLiteralsWeights() - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- getNext(int) - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.SimplexSampler
-
Samples a uniform point on the simplex of dimension d
- getNextPartition() - Method in interface edu.umd.cs.psl.database.DataStore
-
Get the next available partition
- getNextPartition() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- getNMinus1stVariable() - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- getNodes() - Method in interface edu.umd.cs.psl.util.graph.Edge
-
- getNodes() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- getNodes() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- getNodeSnapshot() - Method in interface edu.umd.cs.psl.util.graph.Graph
-
- getNodeSnapshot() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryGraph
-
- getNodeSnapshotByAttribute(String, Object) - Method in interface edu.umd.cs.psl.util.graph.Graph
-
- getNodeSnapshotByAttribute(String, Object) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryGraph
-
- getNoEdges() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getNoEdges() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getNoEntities(ET) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- getNonNegativeOrthantCones() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getNoPartitioningTrials() - Method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- getNoProperties() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getNoProperties() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getNoRelationships() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getNoRelationships() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getNormalSystemSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolverFactory
-
- getNormalSystemSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.CholeskyFactory
-
- getNormalSystemSolver(ConfigBundle) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradientFactory
-
- getNormalSystemSolver(ConfigBundle) - Method in interface edu.umd.cs.psl.optimizer.conic.ipm.solver.NormalSystemSolverFactory
-
- getNoSamples() - Method in class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- getNthVariable() - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- getNthVariable() - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- getNumAtoms() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getNumAtoms() - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
- getNumAtoms() - Method in interface edu.umd.cs.psl.evaluation.statistics.PredictionStatistics
-
- getNumClasses() - Method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Returns the number of classes (labels).
- getNumCones() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getNumDNFClauses() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis
-
- getNumGroundAtoms() - Method in interface edu.umd.cs.psl.evaluation.result.FullInferenceResult
-
- getNumGroundAtoms() - Method in class edu.umd.cs.psl.evaluation.result.memory.MemoryFullInferenceResult
-
- getNumGroundAtoms() - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullInferenceResult
-
- getNumGroundEvidence() - Method in interface edu.umd.cs.psl.evaluation.result.FullInferenceResult
-
- getNumGroundEvidence() - Method in class edu.umd.cs.psl.evaluation.result.memory.MemoryFullInferenceResult
-
- getNumGroundEvidence() - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullInferenceResult
-
- getNumLinearConstraints() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getNumNNOC() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getNumRegisteredGroundKernels() - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
Returns the number of registered ground kernels.
- getNumRSOC() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getNumStepsPerSample() - Method in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- getNumStepsPerSample() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- getNumStepsPerSample() - Method in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- getNumVariables() - Method in class edu.umd.cs.psl.database.DatabaseQuery
-
- getNumVariables() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getNumWords() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity.WordVector
-
- getObjective() - Method in class edu.umd.cs.psl.application.learning.weight.em.LatentObjectiveComputer
-
Computes primal objective
- getObjectiveCoefficient() - Method in class edu.umd.cs.psl.optimizer.conic.program.Variable
-
- getOpenInserter(Predicate) - Method in interface edu.umd.cs.psl.database.loading.DataLoader
-
- getOpenInserter(Predicate) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataLoader
-
- getorCreateEntity(int, ET) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- getorSetIndex(AtomFunctionVariable) - Method in class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- getOtherNode(Node) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- getOtherNode(Node) - Method in interface edu.umd.cs.psl.util.graph.Relationship
-
- getParameter(int) - Method in interface edu.umd.cs.psl.model.parameters.Parameters
-
- getParameter(int) - Method in class edu.umd.cs.psl.model.parameters.Weight
-
- getParameters() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.LogLoss
-
- getParameters() - Method in class edu.umd.cs.psl.model.kernel.AbstractKernel
-
- getParameters() - Method in interface edu.umd.cs.psl.model.kernel.Kernel
-
- getParameters() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- getParameters() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- getParameters() - Method in interface edu.umd.cs.psl.model.parameters.Parameters
-
- getParameters() - Method in class edu.umd.cs.psl.model.parameters.Weight
-
- getPartialGrounding() - Method in class edu.umd.cs.psl.database.DatabaseQuery
-
- getPartition(int) - Method in class edu.umd.cs.psl.optimizer.conic.partition.AbstractCompletePartitioner
-
- getPartition(int) - Method in interface edu.umd.cs.psl.optimizer.conic.partition.CompletePartitioner
-
- getPartition() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ObjectiveCoefficientPartitioner
-
- getPartitioner(ConfigBundle) - Method in interface edu.umd.cs.psl.optimizer.conic.partition.CompletePartitionerFactory
-
- getPartitioner(ConfigBundle) - Method in interface edu.umd.cs.psl.util.graph.partition.PartitionerFactory
-
- getPartitionEstimate() - Method in class edu.umd.cs.psl.sampler.PartitionEstimationSampler
-
- getPersistedRVAtoms() - Method in class edu.umd.cs.psl.model.atom.PersistedAtomManager
-
- getPhi() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- getPool() - Static method in class edu.umd.cs.psl.util.concurrent.ThreadPool
-
- getPos(Variable) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- getPosLiterals() - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- getPosLiterals() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis.DNFClause
-
- getPosLiteralsWeights() - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- getPrecision(DiscretePredictionStatistics.BinaryClass) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getPrecision(int) - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
Returns the per-class precision.
- getPrecisionMatrix() - Method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Returns the precision matrix, computed by normlizing each entry (i,j) the sum of column j.
- getPreconditioner(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.BlockPreconditionerFactory
-
- getPreconditioner(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.DiagonalPreconditionerFactory
-
- getPreconditioner(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.IdentityPreconditionerFactory
-
- getPreconditioner(ConicProgram) - Method in interface edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.PreconditionerFactory
-
- getPredicate() - Method in class edu.umd.cs.psl.model.atom.Atom
-
Returns the predicate associated with this Atom.
- getPredicate() - Method in class edu.umd.cs.psl.model.atom.RandomVariableAtom
-
- getPredicate() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintKernel
-
- getPredicate() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- getPredicate(String) - Method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
Gets the Predicate with the given name, if it exists
- getPredicates() - Method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
- getPrimalInfeasibility() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getPrimalInfeasibility(boolean) - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getProjectionSubset() - Method in class edu.umd.cs.psl.database.DatabaseQuery
-
- getProperties() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getProperties(String) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getProperties() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getProperties(String) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getPropertyIterator() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getPropertyIterator(String) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getPropertyIterator() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getPropertyIterator(String) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getPropertyType() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- getPropertyType() - Method in interface edu.umd.cs.psl.util.graph.Property
-
- getPSLConstraint() - Method in enum edu.umd.cs.psl.groovy.PredicateConstraint
-
- getQueryAtom(Database, Predicate, Object...) - Static method in class edu.umd.cs.psl.util.database.Queries
-
- getQueryForAllAtoms(Predicate) - Static method in class edu.umd.cs.psl.util.database.Queries
-
Returns a DatabaseQuery that matches any GroundAtom of a Predicate.
- getQueryFormula() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis.DNFClause
-
- getReasoner() - Method in class edu.umd.cs.psl.application.inference.MPEInference
-
- getReasoner(ConfigBundle) - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LtnADMMReasonerFactory
-
- getReasoner(ConfigBundle) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasonerFactory
-
- getReasoner(ConfigBundle) - Method in class edu.umd.cs.psl.reasoner.bool.AD3ReasonerFactory
-
- getReasoner(ConfigBundle) - Method in class edu.umd.cs.psl.reasoner.bool.BooleanMaxWalkSatFactory
-
- getReasoner(ConfigBundle) - Method in class edu.umd.cs.psl.reasoner.bool.BooleanMCSatFactory
-
- getReasoner(ConfigBundle) - Method in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasonerFactory
-
- getReasoner(ConfigBundle) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasonerFactory
-
- getReasoner(ConfigBundle) - Method in interface edu.umd.cs.psl.reasoner.ReasonerFactory
-
- getRecall(DiscretePredictionStatistics.BinaryClass) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getRecall(int) - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
Returns the per-class recall.
- getRecallMatrix() - Method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Returns the recall matrix, computed by normlizing each entry (i,j) the sum of row i.
- getRegisteredGroundKernels(Kernel) - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
Returns a set of all registered ground kernels that match a given kernel.
- getRegisteredGroundKernels() - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
Returns a set of all registered ground kernels.
- getRegisteredPredicates() - Method in interface edu.umd.cs.psl.database.Database
-
Returns the set of StandardPredicates registered with this Database.
- getRegisteredPredicates() - Method in interface edu.umd.cs.psl.database.DataStore
-
Returns the set of StandardPredicates registered with this DataStore.
- getRegisteredPredicates() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- getRegisteredPredicates() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- getRelations(RT) - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- getRelations(RT, Subgraph<ET, RT>) - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- getRelations(RT) - Method in class edu.umd.cs.psl.ui.data.graph.Subgraph
-
- getRelationshipIterator() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getRelationshipIterator(String) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getRelationshipIterator() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getRelationshipIterator(String) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getRelationships() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getRelationships(String) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryNode
-
- getRelationships() - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getRelationships(String) - Method in interface edu.umd.cs.psl.util.graph.Node
-
- getRelationshipType() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- getRelationshipType() - Method in interface edu.umd.cs.psl.util.graph.Relationship
-
- getResultsFileName() - Method in class edu.umd.cs.psl.reasoner.bool.AD3Reasoner
-
- getResultsFileName() - Method in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
- getResultsFileName() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- getResultVariable(Variable) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- getRotatedSecondOrderCones() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.ArgumentContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.ArgumentTypeContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.AtomContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstantContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstraintTypeContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.IntConstantContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.KernelContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.PredicateContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.PredicateDefinitionContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.ProgramContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.StrConstantContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.VariableContext
-
- getRuleIndex() - Method in class edu.umd.cs.psl.parser.PSLParser.WeightContext
-
- getRuleNames() - Method in class edu.umd.cs.psl.parser.PSLLexer
-
- getRuleNames() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- getRVBlocks() - Method in class edu.umd.cs.psl.util.model.ConstraintBlocker
-
- getRVMap() - Method in class edu.umd.cs.psl.util.model.ConstraintBlocker
-
- getS() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getScore(List<GroundAtom>, List<GroundAtom>) - Method in enum edu.umd.cs.psl.evaluation.statistics.RankingScore
-
Scores a ranking of Atoms given an expected ranking
- getSecond() - Method in class edu.umd.cs.psl.ui.data.graph.BinaryRelation
-
- getSecondOrderCones() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getSetAtom() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- getShort(String, short) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a short associated with the given configuration key.
- getShort(String, Short) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a
Short
associated with the given configuration key.
- getShort(String, short) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getShort(String, Short) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getSimilarityFunctionID(ExternalFunction) - Static method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
Registers and returns an ID for a given ExternalFunction.
- getSize() - Method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- getSize() - Method in interface edu.umd.cs.psl.util.graph.partition.Partitioner
-
Returns the current size of produced partitions
- getSizeMultiplier(TermMembership, TermMembership) - Method in interface edu.umd.cs.psl.model.set.aggregator.EntityAggregatorFunction
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateConstantSetOverlap
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetAverage
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetCrossEquality
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetInverseAverage
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetOverlap
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.EvidSetMin
-
- getSizeMultiplier(TermMembership, TermMembership) - Method in class edu.umd.cs.psl.ui.aggregators.SetMin
-
- getSolution() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
- getSparse2DByVars(SparseDoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- getSplits(Database, Random) - Method in class edu.umd.cs.psl.util.datasplitter.splitstep.PredicateUniformSplitStep
-
- getSplits(Database, Random) - Method in class edu.umd.cs.psl.util.datasplitter.splitstep.QueryUniformSplitStep
-
- getSplits(Database, Random) - Method in interface edu.umd.cs.psl.util.datasplitter.splitstep.SplitStep
-
- getSQL(Formula) - Method in class edu.umd.cs.psl.database.rdbms.Formula2SQL
-
- getStandardPredicates() - Method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
- getStart() - Method in interface edu.umd.cs.psl.util.graph.Edge
-
- getStart() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryEdge
-
- getStatistics() - Method in class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- getStepSize(int) - Method in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- getStepSize(int) - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- getStoredWeights() - Method in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- getString(String, String) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Get a string associated with the given configuration key.
- getString(String, String) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- getTerm() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner.VariableLocation
-
- getTerm() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSummand
-
- getTestDataGroundTruthIDs() - Method in interface edu.umd.cs.psl.ui.experiment.folds.FoldLoader
-
- getTestDataGroundTruthIDs() - Method in class edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoaderAdapter
-
- getTestDataIDs() - Method in interface edu.umd.cs.psl.ui.experiment.folds.FoldLoader
-
- getTestDataIDs() - Method in class edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoaderAdapter
-
- getTheta() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- getThreshold() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics
-
- getTokenNames() - Method in class edu.umd.cs.psl.parser.PSLLexer
-
- getTokenNames() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- getTotalWeightedCompatibility(Iterable<GroundCompatibilityKernel>) - Static method in class edu.umd.cs.psl.application.util.GroundKernels
-
- getTotalWeightedIncompatibility(Iterable<GroundCompatibilityKernel>) - Static method in class edu.umd.cs.psl.application.util.GroundKernels
-
- getTotalWeightedIncompatibility() - Method in interface edu.umd.cs.psl.evaluation.result.FullInferenceResult
-
- getTotalWeightedIncompatibility() - Method in class edu.umd.cs.psl.evaluation.result.memory.MemoryFullInferenceResult
-
- getTrainDataGroundTruthIDs() - Method in interface edu.umd.cs.psl.ui.experiment.folds.FoldLoader
-
- getTrainDataGroundTruthIDs() - Method in class edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoaderAdapter
-
- getTrainDataIDs() - Method in interface edu.umd.cs.psl.ui.experiment.folds.FoldLoader
-
- getTrainDataIDs() - Method in class edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoaderAdapter
-
- getTrainingMap() - Method in class edu.umd.cs.psl.application.learning.weight.TrainingMap
-
Gets the map created by the constructor.
- getTruthValue(Formula) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaEvaluator
-
- getTruthValue() - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractGroundRule
-
- getType(GroundTerm) - Static method in enum edu.umd.cs.psl.model.argument.ArgumentType
-
- getType(Variable) - Method in class edu.umd.cs.psl.model.argument.VariableTypeMap
-
Returns the type of a given variable.
- getType() - Method in class edu.umd.cs.psl.model.atom.AtomEvent
-
- getType() - Method in class edu.umd.cs.psl.model.ModelEvent
-
- getType() - Method in class edu.umd.cs.psl.ui.data.graph.Entity
-
- getType() - Method in class edu.umd.cs.psl.ui.data.graph.Relation
-
- getUnassignedCones() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- getUniqueID(Object) - Method in interface edu.umd.cs.psl.database.Database
-
Convenience method.
- getUniqueID(Object) - Method in interface edu.umd.cs.psl.database.DataStore
-
Returns a UniqueID based on the given key.
- getUniqueID(Object) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- getUniqueID(Object) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- getUniqueID(Object) - Method in class edu.umd.cs.psl.database.ReadOnlyDatabase
-
- getUpdater(StandardPredicate, Partition) - Method in interface edu.umd.cs.psl.database.DataStore
-
- getUpdater(StandardPredicate, Partition) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
- getV(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- getValue() - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.function.NegativeLogFunction
-
Returns the sum of the logs of the values of the atoms
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.function.NegativeLogFunction
-
- getValue() - Method in interface edu.umd.cs.psl.model.argument.Attribute
-
- getValue() - Method in class edu.umd.cs.psl.model.argument.DateAttribute
-
- getValue() - Method in class edu.umd.cs.psl.model.argument.DoubleAttribute
-
- getValue() - Method in class edu.umd.cs.psl.model.argument.IntegerAttribute
-
- getValue() - Method in class edu.umd.cs.psl.model.argument.LongAttribute
-
- getValue() - Method in class edu.umd.cs.psl.model.argument.StringAttribute
-
- getValue() - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
- getValue(ReadOnlyDatabase, GroundTerm...) - Method in interface edu.umd.cs.psl.model.function.ExternalFunction
-
- getValue() - Method in class edu.umd.cs.psl.optimizer.conic.program.Variable
-
- getValue() - Method in class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- getValue() - Method in class edu.umd.cs.psl.reasoner.function.ConstantNumber
-
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in class edu.umd.cs.psl.reasoner.function.ConstantNumber
-
- getValue() - Method in class edu.umd.cs.psl.reasoner.function.ConstraintTerm
-
- getValue() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- getValue() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSummand
-
Returns the value of the encapsulated
FunctionSingleton
multiplied
by the coefficient.
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in class edu.umd.cs.psl.reasoner.function.FunctionSummand
-
- getValue() - Method in interface edu.umd.cs.psl.reasoner.function.FunctionTerm
-
Returns the term's value
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in interface edu.umd.cs.psl.reasoner.function.FunctionTerm
-
- getValue() - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
Returns the maximum of the values of the functions.
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- getValue() - Method in class edu.umd.cs.psl.reasoner.function.PowerOfTwo
-
- getValue(Map<? extends FunctionVariable, Double>, boolean) - Method in class edu.umd.cs.psl.reasoner.function.PowerOfTwo
-
- getValue(ReadOnlyDatabase, GroundTerm...) - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- getValue(ReadOnlyDatabase, GroundTerm...) - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.DiceSimilarity
-
- getValue(ReadOnlyDatabase, GroundTerm...) - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.LevenshteinSimilarity
-
- getValue(ReadOnlyDatabase, GroundTerm...) - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.SubStringSimilarity
-
- getValue() - Method in class edu.umd.cs.psl.util.collection.QuickSelector
-
- getValueAndGradient(double[], double[]) - Method in interface edu.umd.cs.psl.optimizer.lbfgs.ConvexFunc
-
Returns the value and gradients with respect to each parameter.
- getVariable(int) - Method in class edu.umd.cs.psl.database.DatabaseQuery
-
Returns the Variable at a given index in this Query's formula according
to a depth-first, left-to-right traversal (starting with 0).
- getVariable() - Method in class edu.umd.cs.psl.model.atom.GroundAtom
-
- getVariable() - Method in class edu.umd.cs.psl.model.atom.ObservedAtom
-
- getVariable() - Method in class edu.umd.cs.psl.model.atom.RandomVariableAtom
-
- getVariable(Variable) - Method in class edu.umd.cs.psl.model.atom.VariableAssignment
-
Returns the ground term for a given variable.
- getVariable() - Method in class edu.umd.cs.psl.optimizer.conic.program.NonNegativeOrthantCone
-
- getVariableIndex(Variable) - Method in class edu.umd.cs.psl.database.DatabaseQuery
-
Returns the index of a Variable in this Query's formula according to a
depth-first, left-to-right traversal (starting with 0).
- getVariables() - Method in class edu.umd.cs.psl.model.argument.VariableTypeMap
-
Returns all variables in the hashmap.
- getVariables() - Method in class edu.umd.cs.psl.model.atom.VariableAssignment
-
Returns all variables.
- getVariables() - Method in class edu.umd.cs.psl.optimizer.conic.program.LinearConstraint
-
- getVariables() - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- getVariables() - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- getVarMap() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getVarProxy(AtomFunctionVariable) - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- getVector(String) - Static method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- getW() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- getWeight() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- getWeight() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- getWeight() - Method in interface edu.umd.cs.psl.model.kernel.CompatibilityKernel
-
- getWeight() - Method in interface edu.umd.cs.psl.model.kernel.GroundCompatibilityKernel
-
Returns the Weight of this GroundCompatibilityKernel.
- getWeight() - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- getWeight() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundCompatibilityRule
-
- getWeight() - Method in class edu.umd.cs.psl.model.parameters.Weight
-
- getWeight(LinearConstraint, Cone) - Method in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- getWeight(LinearConstraint, Cone) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ObjectiveCoefficientCompletePartitioner
-
- getWeight(LinearConstraint, Cone) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ObjectiveCoefficientPartitioner
-
- getWeight(LinearConstraint, Cone) - Method in class edu.umd.cs.psl.optimizer.conic.partition.WeightedDistanceCompletePartitioner
-
- getWeight(Node) - Method in class edu.umd.cs.psl.util.graph.weight.ConstantOneNodeWeighter
-
- getWeight(Relationship) - Method in class edu.umd.cs.psl.util.graph.weight.HashRelationshipWeighter
-
- getWeight(Node) - Method in interface edu.umd.cs.psl.util.graph.weight.NodeWeighter
-
- getWeight(Node) - Method in class edu.umd.cs.psl.util.graph.weight.PropertyNodeWeighter
-
- getWeight(Relationship) - Method in interface edu.umd.cs.psl.util.graph.weight.RelationshipWeighter
-
- getX() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- gks - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- gks - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- GOEDEL - Static variable in class edu.umd.cs.psl.model.formula.traversal.FormulaEvaluator
-
- Graph<ET extends EntityType,RT extends RelationType> - Class in edu.umd.cs.psl.ui.data.graph
-
- Graph() - Constructor for class edu.umd.cs.psl.ui.data.graph.Graph
-
- Graph - Interface in edu.umd.cs.psl.util.graph
-
- GraphContractTest - Class in edu.umd.cs.psl.util.graph
-
Contract tests for classes that implement
Graph
.
- GraphContractTest() - Constructor for class edu.umd.cs.psl.util.graph.GraphContractTest
-
- ground(Formula) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- ground(Formula, AtomManager, ResultList) - Static method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- groundAll(AtomManager, GroundKernelStore) - Method in class edu.umd.cs.psl.application.topicmodel.kernel.LogLoss
-
- groundAll(Model, AtomManager, GroundKernelStore) - Static method in class edu.umd.cs.psl.application.util.Grounding
-
- groundAll(Model, AtomManager, GroundKernelStore, Predicate<Kernel>) - Static method in class edu.umd.cs.psl.application.util.Grounding
-
- groundAll(AtomManager, GroundKernelStore) - Method in interface edu.umd.cs.psl.model.kernel.Kernel
-
- groundAll(AtomManager, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintKernel
-
- groundAll(AtomManager, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- groundAll(AtomManager, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- groundAll(AtomManager, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- GroundAtom - Class in edu.umd.cs.psl.model.atom
-
- GroundAtom(Predicate, GroundTerm[], Database, double, double) - Constructor for class edu.umd.cs.psl.model.atom.GroundAtom
-
- groundAtom(AtomManager, Atom, ResultList, int, VariableAssignment) - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- GroundCompatibilityKernel - Interface in edu.umd.cs.psl.model.kernel
-
- GroundCompatibilityRule - Class in edu.umd.cs.psl.model.kernel.rule
-
- GroundConstraintKernel - Interface in edu.umd.cs.psl.model.kernel
-
- GroundConstraintRule - Class in edu.umd.cs.psl.model.kernel.rule
-
- GroundDomainRangeConstraint - Class in edu.umd.cs.psl.model.kernel.predicateconstraint
-
- GroundDomainRangeConstraint(DomainRangeConstraintKernel, GroundTerm, double) - Constructor for class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundDomainRangeConstraint
-
- GroundEmptySetDefinition - Class in edu.umd.cs.psl.model.kernel.setdefinition
-
- GroundEmptySetDefinition(SetDefinitionKernel, GroundAtom, double) - Constructor for class edu.umd.cs.psl.model.kernel.setdefinition.GroundEmptySetDefinition
-
- groundFormula(AtomManager, GroundKernelStore, ResultList, VariableAssignment) - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- groundFormula(AtomManager, GroundKernelStore, ResultList, VariableAssignment) - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- groundFormulaInstance(List<GroundAtom>, List<GroundAtom>) - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- groundFormulaInstance(List<GroundAtom>, List<GroundAtom>) - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- groundFormulaInstance(List<GroundAtom>, List<GroundAtom>) - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- groundFormulaInstance(List<GroundAtom>, List<GroundAtom>) - Method in class edu.umd.cs.psl.model.kernel.rule.ConstraintRuleKernel
-
- GroundIncompatibilityMetropolisRandOM - Class in edu.umd.cs.psl.application.learning.weight.random
-
A
GroundMetropolisRandOM
learning algorithm which scores the likelihood
of a sample using the distance in total (unweighted) incompatibility space grouped
by
CompatibilityKernel
between the sample and the observations.
- GroundIncompatibilityMetropolisRandOM(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.random.GroundIncompatibilityMetropolisRandOM
-
- Grounding - Class in edu.umd.cs.psl.application.util
-
Static utilities for common
Model
-grounding tasks.
- Grounding() - Constructor for class edu.umd.cs.psl.application.util.Grounding
-
- GroundKernel - Interface in edu.umd.cs.psl.model.kernel
-
A function that either constrains or measures the compatibility of the
truth values of
GroundAtoms
.
- groundKernels - Variable in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- GroundKernels - Class in edu.umd.cs.psl.application.util
-
- GroundKernels() - Constructor for class edu.umd.cs.psl.application.util.GroundKernels
-
- groundKernels - Variable in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
Ground kernels defining the objective function
- GroundKernelStore - Interface in edu.umd.cs.psl.application.groundkernelstore
-
- GroundLinearConstraint - Class in edu.umd.cs.psl.model.kernel.linearconstraint
-
- GroundLinearConstraint(GroundAtom[], double[], FunctionComparator, double) - Constructor for class edu.umd.cs.psl.model.kernel.linearconstraint.GroundLinearConstraint
-
- GroundLogLoss - Class in edu.umd.cs.psl.application.topicmodel.kernel
-
Ground log loss kernels, useful when PSL variables are given a probabilistic
interpretation, as in latent topic networks.
- GroundLogLoss(CompatibilityKernel, List<GroundAtom>, List<Double>) - Constructor for class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- GroundMetropolisRandOM - Class in edu.umd.cs.psl.application.learning.weight.random
-
- GroundMetropolisRandOM(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- GroundSetDefinition - Class in edu.umd.cs.psl.model.kernel.setdefinition
-
A fuzzy formula atom is a particular type of formula atom that allows its truth values to be in the
range from 0 to 1.
- GroundSliceRandOM - Class in edu.umd.cs.psl.application.learning.weight.random
-
- GroundSliceRandOM(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- GroundSymmetryConstraint - Class in edu.umd.cs.psl.model.kernel.predicateconstraint
-
- GroundSymmetryConstraint(ConstraintKernel, GroundAtom, GroundAtom) - Constructor for class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundSymmetryConstraint
-
- GroundTerm - Interface in edu.umd.cs.psl.model.argument
-
- GroundValueConstraint - Class in edu.umd.cs.psl.model.kernel.linearconstraint
-
- GroundValueConstraint(RandomVariableAtom, double) - Constructor for class edu.umd.cs.psl.model.kernel.linearconstraint.GroundValueConstraint
-
- GroundWeightedCompatibilityRule - Class in edu.umd.cs.psl.model.kernel.rule
-
A Ground Compatibility Rule with weights on the literals
- groundWeightedFormulaInstance(List<GroundAtom>, List<GroundAtom>, List<Double>, List<Double>) - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- gtNumSOC() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- id - Variable in class edu.umd.cs.psl.optimizer.conic.program.Entity
-
- ID_ARG - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- ID_ARG - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- IDENTIFIER - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- IDENTIFIER - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- IDENTIFIER() - Method in class edu.umd.cs.psl.parser.PSLParser.PredicateContext
-
- IDENTIFIER() - Method in class edu.umd.cs.psl.parser.PSLParser.VariableContext
-
- IdentityPreconditionerFactory - Class in edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner
-
Factory for constructing DoubleIdentity
preconditioners.
- IdentityPreconditionerFactory() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.IdentityPreconditionerFactory
-
- immutableKernels - Variable in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
- IMPLIEDBY - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- IMPLIEDBY() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- IMPLIEDBY - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- include(String[]) - Method in interface edu.umd.cs.psl.ui.data.file.util.DelimitedObjectConstructor.Filter
-
- IncompatibilityMetropolisRandOM - Class in edu.umd.cs.psl.application.learning.weight.random
-
- IncompatibilityMetropolisRandOM(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.random.IncompatibilityMetropolisRandOM
-
- IncompatibilitySliceRandOM - Class in edu.umd.cs.psl.application.learning.weight.random
-
A
FirstOrderSliceRandOM
learning algorithm which scores the likelihood
of a sample using the distance in total (unweighted) incompatibility space grouped
by
CompatibilityKernel
between the sample and the observations.
- IncompatibilitySliceRandOM(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.random.IncompatibilitySliceRandOM
-
- increment(double) - Method in class edu.umd.cs.psl.util.concurrent.AtomicDouble
-
- indexOf(Object) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- INFEASIBILITY_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Default value for INFEASIBILITY_THRESHOLD_KEY property.
- INFEASIBILITY_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
Default value for INFEASIBILITY_THRESHOLD_KEY property.
- INFEASIBILITY_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Key for double property.
- INFEASIBILITY_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
Key for double property.
- infeasibilityThreshold - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- InferenceResult - Interface in edu.umd.cs.psl.evaluation.result
-
- inferLatentVariables() - Method in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Infers the most probable assignment to the latent variables conditioned
on the observations and labeled unknowns using the most recently learned
model.
- INIT_FEASIBLE_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
Default value for INIT_FEASIBLE_KEY property
- INIT_FEASIBLE_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
Key for boolean property.
- INIT_MSTEP_TO_LDA_PHI_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Default value for INIT_MSTEP_TO_LDA_PHI_KEY
- INIT_MSTEP_TO_LDA_PHI_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Key for Boolean property indicating whether to initialize the ADMM variables to LDA, for phi.
- INIT_MSTEP_TO_LDA_THETA_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Default value for INIT_MSTEP_TO_LDA_THETA_KEY
- INIT_MSTEP_TO_LDA_THETA_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Key for Boolean property indicating whether to initialize the ADMM variables to LDA, for theta.
- initAsDirichlet() - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.NegativeLogLossTerm
-
- initDirichletTerms() - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LatentTopicNetworkADMMReasoner
-
- initDualVariablesAsDirichlet(double) - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LtnLinearConstraintTerm
-
- initFeasible - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- initGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
- initGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- initGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
- initGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.LazyMaxLikelihoodMPE
-
- initGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Note: calls super.initGroundModel() first, in order to ground model.
- initGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- initGroundModel() - Method in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
Constructs a ground model using model and trainingMap, and stores the
resulting GroundKernels in reasoner.
- initGroundModel() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Note: calls super.initGroundModel() first, in order to ground model.
- initGroundModel() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Note: calls super.initGroundModel() first, in order to ground model.
- INITIAL_VARIANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Default value for INITIAL_VARIANCE_KEY
- INITIAL_VARIANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Default value for INITIAL_VARIANCE_KEY
- INITIAL_VARIANCE_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Key for positive double to be used as the initial variance for each
Kernel's weight
- INITIAL_VARIANCE_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Key for positive double to be used as the initial variance for each
Kernel's weight
- initialize() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- initializeForReasoner(Reasoner, PersistedAtomManager, Model, Database, double[][], double[][], Predicate) - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- initializer - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- initialVariance - Variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- initialVariance - Variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- insert(Object...) - Method in interface edu.umd.cs.psl.database.loading.Inserter
-
- insert(Partition, Object...) - Method in interface edu.umd.cs.psl.database.loading.OpenInserter
-
- Inserter - Interface in edu.umd.cs.psl.database.loading
-
- InserterLookup - Interface in edu.umd.cs.psl.ui.loading
-
- InserterLookupMap - Class in edu.umd.cs.psl.ui.loading
-
- InserterLookupMap() - Constructor for class edu.umd.cs.psl.ui.loading.InserterLookupMap
-
- InserterUtils - Class in edu.umd.cs.psl.ui.loading
-
Utility methods for common data-loading tasks.
- InserterUtils() - Constructor for class edu.umd.cs.psl.ui.loading.InserterUtils
-
- insertValue(double, Object...) - Method in interface edu.umd.cs.psl.database.loading.Inserter
-
- insertValue(Partition, double, Object...) - Method in interface edu.umd.cs.psl.database.loading.OpenInserter
-
- insertValue(Partition, double, double, Object...) - Method in interface edu.umd.cs.psl.database.loading.OpenInserter
-
- insertValueConfidence(double, double, Object...) - Method in interface edu.umd.cs.psl.database.loading.Inserter
-
- InSetFilter - Class in edu.umd.cs.psl.evaluation.statistics.filter
-
- InSetFilter(Set<GroundAtom>) - Constructor for class edu.umd.cs.psl.evaluation.statistics.filter.InSetFilter
-
- instantiateObservedAtom(Predicate, GroundTerm[], double, double) - Method in class edu.umd.cs.psl.model.atom.AtomCache
-
Instantiates an ObservedAtom and stores it in this AtomCache.
- instantiateRandomVariableAtom(StandardPredicate, GroundTerm[], double, double) - Method in class edu.umd.cs.psl.model.atom.AtomCache
-
Instantiates a RandomVariableAtom and stores it in this AtomCache.
- INT_ARG - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- INT_ARG - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- intConstant() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstantContext
-
- intConstant() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- IntegerAttribute - Class in edu.umd.cs.psl.model.argument
-
- IntegerAttribute(Integer) - Constructor for class edu.umd.cs.psl.model.argument.IntegerAttribute
-
Constructs an Integer attribute from an Integer
- Inv - Static variable in enum edu.umd.cs.psl.groovy.syntax.OIPModifier
-
- INVERSE_FUNCTIONAL_CONSTRAINT - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- INVERSE_FUNCTIONAL_CONSTRAINT - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- INVERSE_PARTIAL_FUNCTIONAL_CONSTRAINT - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- INVERSE_PARTIAL_FUNCTIONAL_CONSTRAINT - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- invertPartitions(Collection<Partition>, Set<Partition>) - Static method in class edu.umd.cs.psl.util.datasplitter.builddbstep.PartitionSetUtils
-
- IPM - Class in edu.umd.cs.psl.optimizer.conic.ipm
-
Primal-dual short-step interior point method.
- IPM(ConfigBundle) - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- IPMFactory - Class in edu.umd.cs.psl.optimizer.conic.ipm
-
- IPMFactory() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.IPMFactory
-
- IPMTest - Class in edu.umd.cs.psl.optimizer.conic.ipm
-
- IPMTest() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.IPMTest
-
- isClosed(StandardPredicate) - Method in class edu.umd.cs.psl.application.learning.weight.TrainingMap
-
- isClosed(StandardPredicate) - Method in interface edu.umd.cs.psl.database.Database
-
Returns whether a StandardPredicate is closed in this Database.
- isClosed(StandardPredicate) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSDatabase
-
- isClosed(StandardPredicate) - Method in class edu.umd.cs.psl.model.atom.AtomEventFramework
-
- isClosed(StandardPredicate) - Method in interface edu.umd.cs.psl.model.atom.AtomManager
-
- isClosed(StandardPredicate) - Method in class edu.umd.cs.psl.model.atom.PersistedAtomManager
-
- isClosed(StandardPredicate) - Method in class edu.umd.cs.psl.model.atom.SimpleAtomManager
-
- isConstant() - Method in class edu.umd.cs.psl.reasoner.function.ConstantAtomFunctionVariable
-
- isConstant() - Method in class edu.umd.cs.psl.reasoner.function.ConstantNumber
-
- isConstant() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- isConstant() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSummand
-
- isConstant() - Method in interface edu.umd.cs.psl.reasoner.function.FunctionTerm
-
Returns whether the term is constant.
- isConstant() - Method in interface edu.umd.cs.psl.reasoner.function.FunctionVariable
-
- isConstant() - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- isConstant() - Method in class edu.umd.cs.psl.reasoner.function.MutableAtomFunctionVariable
-
- isConstant() - Method in class edu.umd.cs.psl.reasoner.function.PowerOfTwo
-
- isEmpty() - Method in class edu.umd.cs.psl.util.collection.HashList
-
- isGround() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis.DNFClause
-
- isIncidentOn(Node) - Method in interface edu.umd.cs.psl.util.graph.Edge
-
- isIncidentOn(Node) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- isIncidentOn(Node) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- isInstance(GroundTerm) - Method in enum edu.umd.cs.psl.model.argument.ArgumentType
-
Returns whether a GroundTerm is of the type identified by this ArgumentType
- isInterior(Map<Variable, Integer>, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.Cone
-
- isInterior(Map<Variable, Integer>, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.NonNegativeOrthantCone
-
- isInterior(Map<Variable, Integer>, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- isInterior(Map<Variable, Integer>, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- isLinear() - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.function.NegativeLogFunction
-
- isLinear() - Method in class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- isLinear() - Method in class edu.umd.cs.psl.reasoner.function.ConstantNumber
-
- isLinear() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- isLinear() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSummand
-
- isLinear() - Method in interface edu.umd.cs.psl.reasoner.function.FunctionTerm
-
Returns whether the term is linear in its
Variables
.
- isLinear() - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- isLinear() - Method in class edu.umd.cs.psl.reasoner.function.PowerOfTwo
-
- isMember(A) - Method in class edu.umd.cs.psl.model.set.membership.ConstantMembership
-
- isMember(A) - Method in interface edu.umd.cs.psl.model.set.membership.Membership
-
- isMember(A) - Method in class edu.umd.cs.psl.model.set.membership.SoftMembership
-
- isProperty() - Method in interface edu.umd.cs.psl.util.graph.Edge
-
- isProperty() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- isProperty() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- isQueriable() - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis.DNFClause
-
- isRelationship() - Method in interface edu.umd.cs.psl.util.graph.Edge
-
- isRelationship() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryProperty
-
- isRelationship() - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- isSelfLoop(Node) - Method in class edu.umd.cs.psl.util.graph.memory.MemoryRelationship
-
- isSelfLoop(Node) - Method in interface edu.umd.cs.psl.util.graph.Relationship
-
- isSimpleObjectiveFunction(FunctionTerm) - Static method in class edu.umd.cs.psl.reasoner.function.util.FunctionAnalyser
-
Returns whether a function has a core function.
- isSingleton(Cone) - Method in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- isSoft() - Method in class edu.umd.cs.psl.ui.data.graph.Relation
-
- isSoft() - Method in interface edu.umd.cs.psl.ui.data.graph.RelationType
-
- isSupportExternalFunction() - Method in interface edu.umd.cs.psl.database.rdbms.driver.DatabaseDriver
-
Returns whether the underline database supports external java functions.
- isSupportExternalFunction() - Method in class edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver
-
- isSupportExternalFunction() - Method in class edu.umd.cs.psl.database.rdbms.driver.MySQLDriver
-
- isSymmetric() - Method in interface edu.umd.cs.psl.ui.data.graph.RelationType
-
- isValid(double) - Static method in class edu.umd.cs.psl.model.ConfidenceValues
-
- isWeightMutable() - Method in interface edu.umd.cs.psl.model.kernel.CompatibilityKernel
-
- isWeightMutable() - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- ITER_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Default value for ITER_KEY property
- ITER_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Key for positive int property for the number of iterations of expectation
maximization to perform
- iterations - Variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- iterator() - Method in class edu.umd.cs.psl.model.set.membership.ConstantMembership
-
- iterator() - Method in class edu.umd.cs.psl.model.set.membership.SoftMembership
-
- iterator() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- iterator() - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- iterator() - Method in class edu.umd.cs.psl.util.collection.HashList
-
- iterator() - Method in class edu.umd.cs.psl.util.datasplitter.ExperimentTree
-
- l - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- l - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- L1_DIMENSION_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.UnforgivingGroundSliceRandOM
-
Default value for L1_DIMENSION_KEY
- L1_DIMENSION_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.UnforgivingGroundSliceRandOM
-
Key for positive double to be used as dimension of L1 ball around ground truth
- L1_REGULARIZATION_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for L1_REGULARIZATION_KEY
- L1_REGULARIZATION_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for positive double property scaling the L1 regularization
\gamma * |w|
- l1Dimension - Variable in class edu.umd.cs.psl.application.learning.weight.random.UnforgivingGroundSliceRandOM
-
- L1MaxMargin - Class in edu.umd.cs.psl.application.learning.weight.maxmargin
-
Max-margin learning with l1 loss function.
- L1MaxMargin(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxmargin.L1MaxMargin
-
- L1MaxMargin.LossBalancingType - Enum in edu.umd.cs.psl.application.learning.weight.maxmargin
-
Types of loss balancing L1MaxMargin can use during learning
- l1Regularization - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- L2_REGULARIZATION_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for L2_REGULARIZATION_KEY
- L2_REGULARIZATION_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for positive double property scaling the L2 regularization
(\lambda / 2) * ||w||^2
- l2Regularization - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- lastIndexOf(Object) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- LatentObjectiveComputer - Class in edu.umd.cs.psl.application.learning.weight.em
-
- LatentObjectiveComputer(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.em.LatentObjectiveComputer
-
- LatentTopicNetwork - Class in edu.umd.cs.psl.application.topicmodel
-
Latent Topic Networks, a framework which jointly reasons over a PSL model
with a topic model, as published in:
J.R.
- LatentTopicNetwork(Model, Database, Model, Database, int[][], int[][], int, String[], String[], String[], DataStore, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- LatentTopicNetwork(Model, Database, Model, Database, int[][], int[][], int, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
A convenience constructor with fewer required fields which can be used when not performing weight learning.
- LatentTopicNetworkADMMReasoner - Class in edu.umd.cs.psl.application.topicmodel.reasoner.admm
-
Wrapper around the ADMM reasoner which adds a little functionality needed
for latent topic networks.
- LatentTopicNetworkADMMReasoner(ConfigBundle) - Constructor for class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LatentTopicNetworkADMMReasoner
-
- LatentTopicNetworkMaxPseudoLikelihood - Class in edu.umd.cs.psl.application.topicmodel
-
Learns weights by optimizing the pseudo-log-likelihood of the data.
- LatentTopicNetworkMaxPseudoLikelihood(Model, Database, Database, ConfigBundle, double, Predicate) - Constructor for class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Constructor
- LatentTopicNetworkMaxPseudoLikelihood_Naive - Class in edu.umd.cs.psl.application.topicmodel
-
Learns weights by optimizing the pseudo-log-likelihood of the data.
- LatentTopicNetworkMaxPseudoLikelihood_Naive(Model, Database, Database, ConfigBundle, double, Predicate) - Constructor for class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Constructor
- latentVariableReasoner - Variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
A reasoner for inferring the latent variables conditioned on
the observations and labels
- LazyMaxLikelihoodMPE - Class in edu.umd.cs.psl.application.learning.weight.maxlikelihood
-
Voted perceptron algorithm that does not require a ground model of pre-specified
dimensionality.
- LazyMaxLikelihoodMPE(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxlikelihood.LazyMaxLikelihoodMPE
-
Constructs a new weight learner.
- LazyMPEInference - Class in edu.umd.cs.psl.application.inference
-
- LazyMPEInference(Model, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.inference.LazyMPEInference
-
- LazyMPEInference.IntermidateState - Class in edu.umd.cs.psl.application.inference
-
Intermediate state object to
notify the registered observers.
- LazyMPEInference.IntermidateState(int, int, int) - Constructor for class edu.umd.cs.psl.application.inference.LazyMPEInference.IntermidateState
-
- lb - Variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Lower bounds on variables
- LBFGSB - Class in edu.umd.cs.psl.optimizer.lbfgs
-
- LBFGSB(int, double, int, ConvexFunc) - Constructor for class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- lcMap - Variable in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- lcMap - Variable in class edu.umd.cs.psl.optimizer.conic.partition.ObjectiveCoefficientPartitioner
-
- LDAgroundLogLoss - Class in edu.umd.cs.psl.application.topicmodel.kernel
-
Ground log loss kernels for LDA.
- LDAgroundLogLoss(CompatibilityKernel, List<GroundAtom>, List<Double>, double[]) - Constructor for class edu.umd.cs.psl.application.topicmodel.kernel.LDAgroundLogLoss
-
- LdaMStep() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- learn() - Method in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
The
RandomVariableAtoms
in the distribution are those
persisted in the Database when this method is called.
- learn() - Method in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
Learns new weights.
- learn(Map<GroundTerm[], double[]>, Map<Variable, int[]>, Map<GroundTerm, GroundTerm[]>...) - Method in interface edu.umd.cs.psl.model.function.LearnableExternalFunction
-
- LearnableExternalFunction - Interface in edu.umd.cs.psl.model.function
-
- length() - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Returns the number of classes (labels).
- length() - Method in interface edu.umd.cs.psl.ui.data.file.util.DelimitedObjectConstructor
-
- length() - Method in class edu.umd.cs.psl.ui.data.file.util.ListIntegerConstructor
-
- LevenshteinSimilarity - Class in edu.umd.cs.psl.ui.functions.textsimilarity
-
- LevenshteinSimilarity() - Constructor for class edu.umd.cs.psl.ui.functions.textsimilarity.LevenshteinSimilarity
-
- LevenshteinSimilarity(double) - Constructor for class edu.umd.cs.psl.ui.functions.textsimilarity.LevenshteinSimilarity
-
- LINE_COMMENT - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- LINE_COMMENT - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- LinearConstraint - Class in edu.umd.cs.psl.optimizer.conic.program
-
- LinearConstraintTerm - Class in edu.umd.cs.psl.reasoner.admm
-
ADMMReasoner
objective term of the form
0 if coeffs^T * x [?] constant
infinity otherwise
where [?] is ==, >=, or <=
- LinearConstraintTerm(ADMMReasoner, int[], double[], double, FunctionComparator) - Constructor for class edu.umd.cs.psl.reasoner.admm.LinearConstraintTerm
-
- LinearConstraintTermTest - Class in edu.umd.cs.psl.reasoner.admm
-
- LinearConstraintTermTest() - Constructor for class edu.umd.cs.psl.reasoner.admm.LinearConstraintTermTest
-
- LinearLossTermTest - Class in edu.umd.cs.psl.reasoner.admm
-
- LinearLossTermTest() - Constructor for class edu.umd.cs.psl.reasoner.admm.LinearLossTermTest
-
- LinearSampler - Class in edu.umd.cs.psl.sampler
-
- LinearSampler(int, int) - Constructor for class edu.umd.cs.psl.sampler.LinearSampler
-
- LinkClosure - Class in edu.umd.cs.psl.util.datasplitter.closurestep
-
Performs link closure.
- LinkClosure(Predicate, Predicate, boolean) - Constructor for class edu.umd.cs.psl.util.datasplitter.closurestep.LinkClosure
-
- ListIntegerConstructor - Class in edu.umd.cs.psl.ui.data.file.util
-
- ListIntegerConstructor(int) - Constructor for class edu.umd.cs.psl.ui.data.file.util.ListIntegerConstructor
-
- listIterator() - Method in class edu.umd.cs.psl.util.collection.HashList
-
- listIterator(int) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- literals - Variable in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- loadClassArbitraryArgs(String, Class<V>) - Static method in class edu.umd.cs.psl.util.dynamicclass.DynamicClassLoader
-
- loadClassArbitraryArgs(String, Map<String, Class<? extends V>>, Class<V>) - Static method in class edu.umd.cs.psl.util.dynamicclass.DynamicClassLoader
-
- loadClassWithArgs(String, String[], Class<V>) - Static method in class edu.umd.cs.psl.util.dynamicclass.DynamicClassLoader
-
- loadClassWithArgs(Class<? extends V>, String[], Class<V>) - Static method in class edu.umd.cs.psl.util.dynamicclass.DynamicClassLoader
-
- loadData(DataLoader) - Method in interface edu.umd.cs.psl.ui.experiment.folds.SingleLoader
-
- LoadDelimitedData - Class in edu.umd.cs.psl.ui.data.file.util
-
- LoadDelimitedData() - Constructor for class edu.umd.cs.psl.ui.data.file.util.LoadDelimitedData
-
- loadDelimitedData(Inserter, String, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadDelimitedData(Inserter, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadDelimitedDataTruth(Inserter, String, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadDelimitedDataTruth(Inserter, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadDelimitedMultiData(InserterLookup, int, String, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadDelimitedMultiData(InserterLookup, int, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadEntityAttributes(String, ET, String[], boolean) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- loadEntityAttributes(String, ET, String[], DelimitedObjectConstructor.Filter, boolean) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- loadFactEntityIntersectionTable(Inserter, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadFactEntityIntersectionTable(Inserter, String, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
Loads facts from a table represented as delimited values in a file.
- loadFactIntersectionTable(Inserter, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
- loadFactIntersectionTable(Inserter, String, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
Loads facts from a table represented as delimited values in a file.
- loadFactTable(DataStore, String, Partition) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
Calls {#loadFactTable(PredicateFactory, DataStore, String, Partition, String)
with
default delimiter.
- loadFactTable(DataStore, String, Partition, String) - Static method in class edu.umd.cs.psl.ui.loading.InserterUtils
-
Loads a table of facts.
- loadIntegerData(String, int, int) - Static method in class edu.umd.cs.psl.ui.data.file.util.LoadDelimitedData
-
- loadIntegerData(String, String, int, int) - Static method in class edu.umd.cs.psl.ui.data.file.util.LoadDelimitedData
-
- loadModel(String, DataStore) - Static method in class edu.umd.cs.psl.parser.PSLModelLoader
-
loads a model from the file system
- loadNextFold(DataLoader) - Method in interface edu.umd.cs.psl.ui.experiment.folds.MultiFoldLoader
-
- loadRelationship(String, RT, ET[], boolean[]) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- loadRelationship(String, String[], RT, ET[], boolean[]) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- loadRelationship(String, String[], RT, ET[], DelimitedObjectConstructor.Filter, boolean[]) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- loadResource(String) - Method in class edu.umd.cs.psl.config.ConfigManager
-
- loadTabData(String, DelimitedObjectConstructor<O>, String) - Static method in class edu.umd.cs.psl.ui.data.file.util.LoadDelimitedData
-
- loadTabData(String, DelimitedObjectConstructor<O>) - Static method in class edu.umd.cs.psl.ui.data.file.util.LoadDelimitedData
-
- loadTest(DataLoader) - Method in interface edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoader
-
- loadTest(DataLoader) - Method in class edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoaderAdapter
-
- loadTrain(DataLoader) - Method in interface edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoader
-
- loadTrain(DataLoader) - Method in class edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoaderAdapter
-
- logLikelihood() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Compute LDA training log-likelihood.
- LogLoss - Class in edu.umd.cs.psl.application.topicmodel.kernel
-
First order log loss kernels, useful when PSL variables are given a
probabilistic interpretation, as in latent topic networks.
- LogLoss() - Constructor for class edu.umd.cs.psl.application.topicmodel.kernel.LogLoss
-
- LongAttribute - Class in edu.umd.cs.psl.model.argument
-
- LongAttribute(Long) - Constructor for class edu.umd.cs.psl.model.argument.LongAttribute
-
Constructs a Double attribute from a Double
- LossAugmentingGroundKernel - Class in edu.umd.cs.psl.application.learning.weight.maxmargin
-
Special ground kernel that penalizes being close to a fixed value of 1.0 or 0.0.
- LossAugmentingGroundKernel(GroundAtom, double, Weight) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- LOWER_BOUND_EPSILON_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LatentTopicNetworkADMMReasoner
-
Default value for LOWER_BOUND_EPSILON_KEY property
- LOWER_BOUND_EPSILON_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LatentTopicNetworkADMMReasoner
-
Key for positive double property.
- lowerBoundEpsilon - Variable in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LatentTopicNetworkADMMReasoner
-
- LtnADMMReasonerFactory - Class in edu.umd.cs.psl.application.topicmodel.reasoner.admm
-
A factory for creating the latent topic networks wrapper for the ADMM reasoner.
- LtnADMMReasonerFactory() - Constructor for class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LtnADMMReasonerFactory
-
- LtnLinearConstraintTerm - Class in edu.umd.cs.psl.application.topicmodel.reasoner.admm
-
- LtnLinearConstraintTerm(ADMMReasoner, int[], double[], double, FunctionComparator) - Constructor for class edu.umd.cs.psl.application.topicmodel.reasoner.admm.LtnLinearConstraintTerm
-
- LUKASIEWICZ - Static variable in class edu.umd.cs.psl.model.formula.traversal.FormulaEvaluator
-
- main(String[]) - Static method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.SimplexSampler
-
- main(String[]) - Static method in class edu.umd.cs.psl.optimizer.lbfgs.Timer
-
- main(String[]) - Static method in class edu.umd.cs.psl.util.collection.QuickSelector
-
- makeDualFeasible() - Method in class edu.umd.cs.psl.optimizer.conic.util.FeasiblePointInitializer
-
- makeFeasible() - Method in class edu.umd.cs.psl.optimizer.conic.util.FeasiblePointInitializer
-
- makePrimalFeasible() - Method in class edu.umd.cs.psl.optimizer.conic.util.FeasiblePointInitializer
-
- MarginalSampler - Class in edu.umd.cs.psl.sampler
-
- MarginalSampler() - Constructor for class edu.umd.cs.psl.sampler.MarginalSampler
-
- MarginalSampler(int) - Constructor for class edu.umd.cs.psl.sampler.MarginalSampler
-
- MarginalSampler(int, int) - Constructor for class edu.umd.cs.psl.sampler.MarginalSampler
-
- MAX_FLIPS_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMaxWalkSat
-
Default value for MAX_FLIPS_KEY
- MAX_FLIPS_KEY - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMaxWalkSat
-
Key for positive integer property that is the maximum number of flips
to try during optimization
- MAX_INNER_ITER - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Key for maximum iterations
- MAX_INNER_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Default value for MAX_INNER_ITER
- MAX_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Default value for MAX_ITER_KEY
- MAX_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Default value for MAX_ITER_KEY
- MAX_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Default value for MAX_ITER_KEY
- MAX_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Default value for MAX_ITER_KEY property
- MAX_ITER_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Key for positive integer, maximum number of constraints to add to
quadratic program
- MAX_ITER_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Key for maximum iterations of Monte Carlo EM
- MAX_ITER_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Key for maximum iterations of Monte Carlo EM
- MAX_ITER_KEY - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Key for int property for the maximum number of iterations of ADMM to
perform in a round of inference
- MAX_OUTER_ITER - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Key for maximum iterations
- MAX_OUTER_ITER_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Default value for MAX_OUTER_ITER
- MAX_ROUNDS_DEFAULT - Static variable in class edu.umd.cs.psl.application.inference.LazyMPEInference
-
Default value for MAX_ROUNDS_KEY property
- MAX_ROUNDS_KEY - Static variable in class edu.umd.cs.psl.application.inference.LazyMPEInference
-
Key for int property for the maximum number of rounds of inference.
- MaxFunction - Class in edu.umd.cs.psl.reasoner.function
-
- MaxFunction() - Constructor for class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- maxIter - Variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- maxIter - Variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- maxIter - Variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- maxIter - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- MaxLikelihoodMPE - Class in edu.umd.cs.psl.application.learning.weight.maxlikelihood
-
Learns weights by optimizing the log likelihood of the data using
the voted perceptron algorithm.
- MaxLikelihoodMPE(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxLikelihoodMPE
-
- MaxMargin - Class in edu.umd.cs.psl.application.learning.weight.maxmargin
-
- MaxMargin(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- MaxMargin.NormScalingType - Enum in edu.umd.cs.psl.application.learning.weight.maxmargin
-
Types of norm scaling MaxMargin can use during learning
- maxNumSteps - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- maxNumSteps - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- MaxPseudoLikelihood - Class in edu.umd.cs.psl.application.learning.weight.maxlikelihood
-
Learns weights by optimizing the pseudo-log-likelihood of the data using
the voted perceptron algorithm.
- MaxPseudoLikelihood(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Constructor
- maxRounds - Variable in class edu.umd.cs.psl.application.inference.LazyMPEInference.IntermidateState
-
- maxStep - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron.IntermediateState
-
- MaxValueFilter - Class in edu.umd.cs.psl.evaluation.statistics.filter
-
- MaxValueFilter(Predicate, int) - Constructor for class edu.umd.cs.psl.evaluation.statistics.filter.MaxValueFilter
-
- means - Variable in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
- Membership<A> - Interface in edu.umd.cs.psl.model.set.membership
-
- MemoryEdge - Class in edu.umd.cs.psl.util.graph.memory
-
- MemoryFullConfidenceAnalysisResult - Class in edu.umd.cs.psl.evaluation.result.memory
-
- MemoryFullConfidenceAnalysisResult(Map<AtomFunctionVariable, DoubleDist>) - Constructor for class edu.umd.cs.psl.evaluation.result.memory.MemoryFullConfidenceAnalysisResult
-
- MemoryFullInferenceResult - Class in edu.umd.cs.psl.evaluation.result.memory
-
- MemoryFullInferenceResult(double, double, int, int) - Constructor for class edu.umd.cs.psl.evaluation.result.memory.MemoryFullInferenceResult
-
- MemoryGraph - Class in edu.umd.cs.psl.util.graph.memory
-
- MemoryGraph() - Constructor for class edu.umd.cs.psl.util.graph.memory.MemoryGraph
-
- MemoryGraphTest - Class in edu.umd.cs.psl.util.graph.memory
-
- MemoryGraphTest() - Constructor for class edu.umd.cs.psl.util.graph.memory.MemoryGraphTest
-
- MemoryGroundKernelStore - Class in edu.umd.cs.psl.application.groundkernelstore
-
- MemoryGroundKernelStore() - Constructor for class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- MemoryNode - Class in edu.umd.cs.psl.util.graph.memory
-
- MemoryProperty - Class in edu.umd.cs.psl.util.graph.memory
-
- MemoryRelationship - Class in edu.umd.cs.psl.util.graph.memory
-
- MetropolisRandOM - Class in edu.umd.cs.psl.application.learning.weight.random
-
- MetropolisRandOM(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- MIN_WIDTH_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Default value for MIN_WIDTH_KEY
- MIN_WIDTH_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Default value for MIN_WIDTH_KEY
- MIN_WIDTH_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Default value for MIN_WIDTH_KEY
- MIN_WIDTH_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Key for positive double property.
- MIN_WIDTH_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Key for positive double property.
- MIN_WIDTH_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Key for positive double property.
- minimize() - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.NegativeLogLossTerm
-
- minimize(int, double[], int[], boolean[]) - Method in class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- minimize(double[], int[], boolean[]) - Method in class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- minimize() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMObjectiveTerm
-
Updates x to the solution of
argmin f(x) + stepSize / 2 * \|x - z + y / stepSize \|_2^2
for the objective term f(x)
- minimize() - Method in class edu.umd.cs.psl.reasoner.admm.LinearConstraintTerm
-
- minimizeKLDivergence() - Method in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
- minimizeKLDivergence() - Method in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- minimizeKLDivergence() - Method in class edu.umd.cs.psl.application.learning.weight.em.HardEM
-
Minimizes the KL divergence by setting the latent variables to their
most probable state conditioned on the evidence and the labeled
random variables.
- minimizeKLDivergence() - Method in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
Minimizes the KL divergence by setting the latent variables to their
most probable state conditioned on the evidence and the labeled
random variables.
- MinNormProgram - Class in edu.umd.cs.psl.application.learning.weight.maxmargin
-
(for now) Solves convex programs of the form
min ||weights .* x - origin||^2 + f'x
s.t.
- MinNormProgram(int, boolean, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
- model - Variable in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
- Model - Class in edu.umd.cs.psl.model
-
A probabilistic soft logic model.
- Model() - Constructor for class edu.umd.cs.psl.model.Model
-
Sole constructor.
- MODEL_HEADER - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- MODEL_HEADER - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- ModelApplication - Interface in edu.umd.cs.psl.application
-
Combines
Models
with
Databases
to perform a task, such as inference or learning.
- ModelEvent - Class in edu.umd.cs.psl.model
-
An event related to a
Model
.
- ModelEvent(ModelEvent.Type, Model, Kernel) - Constructor for class edu.umd.cs.psl.model.ModelEvent
-
Constructs a new ModelEvent with associated properties.
- ModelEvent.Listener - Interface in edu.umd.cs.psl.model
-
A listener for ModelEvents.
- ModelEvent.Type - Enum in edu.umd.cs.psl.model
-
Types of ModelEvents
- modelObservers - Variable in class edu.umd.cs.psl.model.Model
-
- modeNames - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- monitor - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- MOSEK - Class in edu.umd.cs.psl.optimizer.conic.mosek
-
- MOSEK(ConfigBundle) - Constructor for class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
- MOSEKFactory - Class in edu.umd.cs.psl.optimizer.conic.mosek
-
- MOSEKFactory() - Constructor for class edu.umd.cs.psl.optimizer.conic.mosek.MOSEKFactory
-
- MPE_INITIALIZATION_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
Default value for MPE_INITIALIZATION_KEY property
- MPE_INITIALIZATION_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
Key for Boolean property.
- mpeInference() - Method in class edu.umd.cs.psl.application.inference.LazyMPEInference
-
Minimizes the total weighted incompatibility of the
GroundAtoms
in the Database according to the Model and commits the updated truth
values back to the Database.
- MPEInference - Class in edu.umd.cs.psl.application.inference
-
- MPEInference(Model, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.inference.MPEInference
-
- mpeInference() - Method in class edu.umd.cs.psl.application.inference.MPEInference
-
Minimizes the total weighted incompatibility of the
GroundAtoms
in the Database according to the Model and commits the updated truth
values back to the Database.
- mpeInference(Reasoner, PersistedAtomManager, Model, Database, double[][], double[][], Predicate) - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Minimizes the total weighted incompatibility of the
GroundAtoms
in the Database according to the Model and commits the updated truth
values back to the Database.
- mpeInit - Variable in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
- mStep(boolean) - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- MU_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Default value for MU_THRESHOLD_KEY property.
- MU_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Key for double property.
- MulticlassPredictionComparator - Class in edu.umd.cs.psl.evaluation.statistics
-
Computes statistics for multiclass prediction.
- MulticlassPredictionComparator(Database) - Constructor for class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionComparator
-
Constructor
- MulticlassPredictionStatistics - Class in edu.umd.cs.psl.evaluation.statistics
-
- MulticlassPredictionStatistics(ConfusionMatrix) - Constructor for class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionStatistics
-
- MultiFoldLoader - Interface in edu.umd.cs.psl.ui.experiment.folds
-
- mutable - Variable in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- MutableAtomFunctionVariable - Class in edu.umd.cs.psl.reasoner.function
-
- MutableAtomFunctionVariable(RandomVariableAtom) - Constructor for class edu.umd.cs.psl.reasoner.function.MutableAtomFunctionVariable
-
- MySQLDriver - Class in edu.umd.cs.psl.database.rdbms.driver
-
MySQL Connection Wrapper.
- MySQLDriver(String, boolean) - Constructor for class edu.umd.cs.psl.database.rdbms.driver.MySQLDriver
-
Constructor for the MySQL database driver
On Performance:
Use the non-memory specific model, innodb as default
(Note one can change to use MyISAM or Memory engine.
- Negation - Class in edu.umd.cs.psl.model.formula
-
This class implements fuzzy negation.
- Negation(Formula) - Constructor for class edu.umd.cs.psl.model.formula.Negation
-
- negation(double) - Method in enum edu.umd.cs.psl.model.formula.Tnorm
-
- NegativeLogFunction - Class in edu.umd.cs.psl.application.topicmodel.reasoner.function
-
- NegativeLogFunction() - Constructor for class edu.umd.cs.psl.application.topicmodel.reasoner.function.NegativeLogFunction
-
- NegativeLogLossTerm - Class in edu.umd.cs.psl.application.topicmodel.reasoner.admm
-
ADMMReasoner
objective term of the form
weight * coeffs^T * -log(x)
- NegativeWeight - Class in edu.umd.cs.psl.model.parameters
-
- NegativeWeight() - Constructor for class edu.umd.cs.psl.model.parameters.NegativeWeight
-
- NegativeWeight(double) - Constructor for class edu.umd.cs.psl.model.parameters.NegativeWeight
-
- negLiterals - Variable in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- negLiterals - Variable in class edu.umd.cs.psl.model.kernel.rule.AbstractGroundRule
-
- negLiterals - Variable in class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- negLiteralsWeights - Variable in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- negLiteralsWeights - Variable in class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- negLiteralsWeights - Variable in class edu.umd.cs.psl.model.kernel.rule.GroundWeightedCompatibilityRule
-
- next() - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- nextGroundKernel - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- nextKernel - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- nextKernel - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- noCallBacksKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- Node - Interface in edu.umd.cs.psl.util.graph
-
- NodeWeighter - Interface in edu.umd.cs.psl.util.graph.weight
-
- noDimensionsKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- noEqConsKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- NoFilter - Static variable in interface edu.umd.cs.psl.evaluation.statistics.filter.AtomFilter
-
- NoFilter - Static variable in interface edu.umd.cs.psl.ui.data.file.util.DelimitedObjectConstructor
-
- noIneqConsKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- NOISE_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMaxWalkSat
-
Default value for NOISE_KEY
- NOISE_KEY - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMaxWalkSat
-
Key for double property in [0,1] that is the probability of randomly
perturbing an atom in a randomly chosen potential
- NONNEGATIVE_WEIGHTS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for NONNEGATIVE_WEIGHTS_KEY
- NONNEGATIVE_WEIGHTS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Default value for NONNEGATIVE_WEIGHTS_KEY
- NONNEGATIVE_WEIGHTS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for boolean property.
- NONNEGATIVE_WEIGHTS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Key for boolean property.
- NonNegativeOrthantCone - Class in edu.umd.cs.psl.optimizer.conic.program
-
- nonnegativeWeights - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- nonnegativeWeights - Variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- NonSymmetric - Static variable in class edu.umd.cs.psl.model.predicate.SpecialPredicate
-
True if the first argument is less than the second.
- noObjFunKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- NoParameters - Static variable in interface edu.umd.cs.psl.model.parameters.Parameters
-
- noreducedDimKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- NORMAL_SYS_SOLVER_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Default value for NORMAL_SYS_SOLVER_KEY.
- NORMAL_SYS_SOLVER_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Key for
Factory
or String property.
- NormalSystemSolver - Interface in edu.umd.cs.psl.optimizer.conic.ipm.solver
-
Solves the systems of normal equations that arise in interior-point methods.
- NormalSystemSolverFactory - Interface in edu.umd.cs.psl.optimizer.conic.ipm.solver
-
Factory for a NormalSystemSolver.
- normProgram - Variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- noSamplesKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- NOT - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- NOT() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- NOT - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- NotEqual - Static variable in class edu.umd.cs.psl.model.predicate.SpecialPredicate
-
True if arguments are not equal.
- NOTEQUAL - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- NOTEQUAL() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- NOTEQUAL - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- notify(ConicProgram, ConicProgramEvent, Entity, Object...) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- notify(ConicProgram, ConicProgramEvent, Entity, Object...) - Method in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- notify(ConicProgram, ConicProgramEvent, Entity, Object...) - Method in interface edu.umd.cs.psl.optimizer.conic.program.ConicProgramListener
-
- notify(ConicProgram, ConicProgramEvent, Entity, Object...) - Method in class edu.umd.cs.psl.optimizer.conic.util.Dualizer
-
- notify(ConicProgram, ConicProgramEvent, Entity, Object...) - Method in class edu.umd.cs.psl.optimizer.conic.util.FeasiblePointInitializer
-
- notifyAtomEvent(AtomEvent) - Method in class edu.umd.cs.psl.application.topicmodel.kernel.LogLoss
-
- notifyAtomEvent(AtomEvent) - Method in interface edu.umd.cs.psl.model.atom.AtomEvent.Listener
-
Notifies this object of an AtomEvent.
- notifyAtomEvent(AtomEvent) - Method in class edu.umd.cs.psl.model.kernel.AbstractKernel
-
- notifyAtomEvent(AtomEvent, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.AbstractKernel
-
Handles an AtomEvent using the specified GroundKernelStore.
- notifyAtomEvent(AtomEvent, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintKernel
-
- notifyAtomEvent(AtomEvent, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- notifyAtomEvent(AtomEvent, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractRuleKernel
-
- notifyAtomEvent(AtomEvent, GroundKernelStore) - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- notifyKernelParametersModified(Kernel) - Method in class edu.umd.cs.psl.model.Model
-
Notifies this Model that a Kernel's parameters were modified.
- notifyModelEvent(ModelEvent) - Method in interface edu.umd.cs.psl.model.ModelEvent.Listener
-
Notifies this object of a ModelEvent.
- noTimesInCornerKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- nullInserter - Static variable in interface edu.umd.cs.psl.database.loading.Inserter
-
- NUM_BURN_IN_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMCSat
-
Default value for NUM_BURN_IN_KEY
- NUM_BURN_IN_KEY - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMCSat
-
Number of burn-in samples
- NUM_BURNIN_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Default value for NUM_BURNIN_KEY
- NUM_BURNIN_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Key for positive integer property indicating the number of vanilla LDA EM iterations to perform before using hinge losses in the M step.
- NUM_ITERATIONS_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Default value for NUM_ITERATIONS_KEY
- NUM_ITERATIONS_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Key for positive integer property indicating the number of EM iterations to perform.
- NUM_SAMPLES_DEFAULT - Static variable in class edu.umd.cs.psl.application.inference.ConfidenceAnalysis
-
Default value for NUM_SAMPLES_KEY
- NUM_SAMPLES_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Default value for NUM_SAMPLES_KEY
- NUM_SAMPLES_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Default value for NUM_SAMPLES_KEY
- NUM_SAMPLES_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Default value for NUM_SAMPLES_KEY
- NUM_SAMPLES_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Default value for NUM_SAMPLES_KEY
- NUM_SAMPLES_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Default value for NUM_SAMPLES_KEY
- NUM_SAMPLES_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMCSat
-
Default value for NUM_SAMPLES_KEY
- NUM_SAMPLES_KEY - Static variable in class edu.umd.cs.psl.application.inference.ConfidenceAnalysis
-
Positive integer key for the number of samples to collect for confidence
analysis.
- NUM_SAMPLES_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.MaxPseudoLikelihood
-
Key for positive integer property.
- NUM_SAMPLES_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
Key for length of Markov chain
- NUM_SAMPLES_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Key for length of Markov chain
- NUM_SAMPLES_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood
-
Key for positive integer property.
- NUM_SAMPLES_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetworkMaxPseudoLikelihood_Naive
-
Key for positive integer property.
- NUM_SAMPLES_KEY - Static variable in class edu.umd.cs.psl.reasoner.bool.BooleanMCSat
-
Key for length of Markov chain
- NUM_STEPS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for NUM_STEPS_KEY
- NUM_STEPS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for positive integer property.
- NUM_THREADS_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
Default value for NUM_THREADS_KEY property.
- NUM_THREADS_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Default value for STOP_CHECK_KEY property
(by default uses the number of processors in the system)
- NUM_THREADS_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
Key for integer property.
- NUM_THREADS_KEY - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Key for positive integer.
- NUM_TOPICS_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Default value for NUM_TOPICS_KEY
- NUM_TOPICS_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Key for positive integer property indicating the number of EM iterations to perform.
- numActivated - Variable in class edu.umd.cs.psl.application.inference.LazyMPEInference.IntermidateState
-
- NUMBER - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- NUMBER() - Method in class edu.umd.cs.psl.parser.PSLParser.IntConstantContext
-
- NUMBER - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- NUMBER() - Method in class edu.umd.cs.psl.parser.PSLParser.WeightContext
-
- NumericUtilities - Class in edu.umd.cs.psl.model
-
- NumericUtilities() - Constructor for class edu.umd.cs.psl.model.NumericUtilities
-
- numGroundings - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- numGroundings - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundIncompatibilityMetropolisRandOM
-
- numGroundings - Variable in class edu.umd.cs.psl.application.learning.weight.random.IncompatibilityMetropolisRandOM
-
- numGroundings - Variable in class edu.umd.cs.psl.application.learning.weight.random.IncompatibilitySliceRandOM
-
- numParameters() - Method in interface edu.umd.cs.psl.model.parameters.Parameters
-
- numParameters() - Method in class edu.umd.cs.psl.model.parameters.Weight
-
- numSamples - Variable in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- numSamples - Variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- numSteps - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- sample(Iterable<GroundKernel>, double, int) - Method in class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- sampleAlpha(Matrix, Matrix, Matrix, double, double) - Method in class edu.umd.cs.psl.sampler.AbstractHitAndRunSampler
-
- sampleAlpha(Matrix, Matrix, Matrix, double, double) - Method in class edu.umd.cs.psl.sampler.LinearSampler
-
- sampleAlpha(Matrix, Matrix, Matrix, double, double) - Method in class edu.umd.cs.psl.sampler.UniformSampler
-
- sampleAndSetWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- sampleAndSetWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- sampleAndSetWeights() - Method in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- sampleFromGaussian(double, double) - Method in class edu.umd.cs.psl.application.learning.weight.random.MetropolisRandOM
-
- Sampler - Interface in edu.umd.cs.psl.sampler
-
- SAVE_DIR_DEFAULT - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Default value for SAVE_DIR_KEY
- SAVE_DIR_KEY - Static variable in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
Key for string property indicating the directory to save intermediate topic models (if empty, do not save them).
- SCALE_GRADIENT_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for SCALE_GRADIENT_KEY
- SCALE_GRADIENT_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for Boolean property that indicates whether to scale gradient by
number of groundings
- SCALE_NORM_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Default value for SCALE_NORM_KEY
- SCALE_NORM_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Key for NormScalingType enum property.
- scaleGradient - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- scaleNorm - Variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- scheduleStepSize - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- scratch - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- SecondOrderCone - Class in edu.umd.cs.psl.optimizer.conic.program
-
- SecondOrderConeTest - Class in edu.umd.cs.psl.optimizer.conic.ipm
-
- SecondOrderConeTest() - Constructor for class edu.umd.cs.psl.optimizer.conic.ipm.SecondOrderConeTest
-
- SEED_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
Default value for SEED_KEY property
- SEED_KEY - Static variable in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
Key for integer property which is random seed for reasoner
- sempred(RuleContext, int, int) - Method in class edu.umd.cs.psl.parser.PSLParser
-
- separatorString() - Method in class edu.umd.cs.psl.model.formula.AvgConjunction
-
- separatorString() - Method in class edu.umd.cs.psl.model.formula.Conjunction
-
- separatorString() - Method in class edu.umd.cs.psl.model.formula.Disjunction
-
- set(Object...) - Method in interface edu.umd.cs.psl.database.loading.Updater
-
- set(int, int, double) - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Set entry (i,j).
- set(int, E) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- set(double) - Method in class edu.umd.cs.psl.util.concurrent.AtomicDouble
-
- setA(SparseCCDoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- setA(SparseCCDoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.Cholesky
-
- setA(SparseCCDoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
- setA(SparseCCDoubleMatrix2D) - Method in interface edu.umd.cs.psl.optimizer.conic.ipm.solver.NormalSystemSolver
-
- setAttribute(String, Object) - Method in class edu.umd.cs.psl.ui.data.graph.HasAttributes
-
- setBalanceExponent(double) - Method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- setBarrierGradient(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.Cone
-
- setBarrierGradient(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.NonNegativeOrthantCone
-
- setBarrierGradient(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- setBarrierGradient(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- setBarrierHessian(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.Cone
-
- setBarrierHessian(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.NonNegativeOrthantCone
-
- setBarrierHessian(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- setBarrierHessian(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- setBarrierHessianInv(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.Cone
-
- setBarrierHessianInv(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.NonNegativeOrthantCone
-
- setBarrierHessianInv(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- setBarrierHessianInv(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- setBaseline(Database) - Method in class edu.umd.cs.psl.evaluation.statistics.ContinuousPredictionComparator
-
- setBaseline(Database) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparator
-
- setBaseline(Database) - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionComparator
-
Sets the ground truth database.
- setBaseline(Database) - Method in interface edu.umd.cs.psl.evaluation.statistics.ResultComparator
-
Sets the baseline with which to compare.
- setBaseline(Database) - Method in class edu.umd.cs.psl.evaluation.statistics.SimpleRankingComparator
-
- setBoundSpec(int, int) - Method in class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- setBuildDBStep(BuildDBStep) - Method in class edu.umd.cs.psl.util.datasplitter.DataSplitter
-
- SetComparison - Enum in edu.umd.cs.psl.groovy
-
- setConfidence(double) - Method in class edu.umd.cs.psl.reasoner.function.ConstantAtomFunctionVariable
-
- setConfidence(double) - Method in interface edu.umd.cs.psl.reasoner.function.FunctionVariable
-
Sets a confidence value that is associated with the variable.
- setConfidence(double) - Method in class edu.umd.cs.psl.reasoner.function.MutableAtomFunctionVariable
-
- setConfidenceValue(double) - Method in class edu.umd.cs.psl.model.atom.RandomVariableAtom
-
Sets the confidence value of this Atom.
- setConicProgram(ConicProgram) - Method in interface edu.umd.cs.psl.optimizer.conic.ConicProgramSolver
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.ParallelPartitionedIPM
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.PartitionedIPM
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.Cholesky
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
- setConicProgram(ConicProgram) - Method in interface edu.umd.cs.psl.optimizer.conic.ipm.solver.NormalSystemSolver
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.partition.AbstractCompletePartitioner
-
- setConicProgram(ConicProgram) - Method in interface edu.umd.cs.psl.optimizer.conic.partition.CompletePartitioner
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- setConicProgram(ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ObjectiveCoefficientPartitioner
-
- setConstrainedValue(Double) - Method in class edu.umd.cs.psl.optimizer.conic.program.LinearConstraint
-
- SetDefinitionKernel - Class in edu.umd.cs.psl.model.kernel.setdefinition
-
This class implements an abstract fuzzy predicate which is extended by particular fuzzy predicate
classes.
- SetDefinitionKernel(StandardPredicate, SetTerm, SetTerm, Variable[], Predicate, EntityAggregatorFunction, boolean) - Constructor for class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- SetDefinitionKernel(StandardPredicate, SetTerm, SetTerm, Variable[], Predicate, String, boolean) - Constructor for class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- SetDefinitionKernel(StandardPredicate, SetTerm, SetTerm, Variable[], Predicate, String) - Constructor for class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- SetDefinitionKernel(StandardPredicate, SetTerm, SetTerm, Variable[], Predicate, EntityAggregatorFunction) - Constructor for class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- setEpsilonAbs(double) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- setEpsilonRel(double) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- setFtol(double) - Method in class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- setInteriorDirection(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.Cone
-
- setInteriorDirection(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.NonNegativeOrthantCone
-
- setInteriorDirection(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.RotatedSecondOrderCone
-
- setInteriorDirection(Map<Variable, Integer>, DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.program.SecondOrderCone
-
- setLabeledRandomVariables() - Method in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
Sets RandomVariableAtoms with training labels to their observed values.
- setLinearCoefficients(double[]) - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
set f in x'A'Ax + f'x
- setLowerBound(int, double) - Method in class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- setMatrix(DoubleMatrix2D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.BlockPreconditioner
-
- setMaxIter(int) - Method in class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- setMaxIter(int) - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- setMeansToMPE() - Method in class edu.umd.cs.psl.application.learning.weight.em.BernoulliMeanFieldEM
-
- setMetric(ContinuousPredictionComparator.Metric) - Method in class edu.umd.cs.psl.evaluation.statistics.ContinuousPredictionComparator
-
- SetMin - Class in edu.umd.cs.psl.ui.aggregators
-
- SetMin(double, double, double) - Constructor for class edu.umd.cs.psl.ui.aggregators.SetMin
-
- SetMin(double) - Constructor for class edu.umd.cs.psl.ui.aggregators.SetMin
-
- SetMin() - Constructor for class edu.umd.cs.psl.ui.aggregators.SetMin
-
- SetMin(String[]) - Constructor for class edu.umd.cs.psl.ui.aggregators.SetMin
-
- setModel(Model, String) - Method in class edu.umd.cs.psl.application.learning.weight.em.PairedDualLearner
-
- setNoPartitioningTrials(int) - Method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- setObjectiveCoefficient(Double) - Method in class edu.umd.cs.psl.optimizer.conic.program.Variable
-
- setParameter(int, double) - Method in interface edu.umd.cs.psl.model.parameters.Parameters
-
- setParameter(int, double) - Method in class edu.umd.cs.psl.model.parameters.Weight
-
- setParameters(Parameters) - Method in class edu.umd.cs.psl.application.topicmodel.kernel.LogLoss
-
- setParameters(Parameters) - Method in class edu.umd.cs.psl.model.kernel.AbstractKernel
-
- setParameters(Parameters) - Method in interface edu.umd.cs.psl.model.kernel.Kernel
-
Sets the Parameters of this Kernel.
- setParameters(Parameters) - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- setParameters(Parameters) - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- setProperty(String, Object) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Set a property, this will replace any previously set values.
- setProperty(String, Object) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- setQuadraticTerm(double[], double[]) - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
Sets the quadratic term in the norm minimization objective to be
||weight .* x - origin||^2
- setRankingScore(RankingScore) - Method in interface edu.umd.cs.psl.evaluation.statistics.RankingComparator
-
- setRankingScore(RankingScore) - Method in class edu.umd.cs.psl.evaluation.statistics.SimpleRankingComparator
-
- setResultFilter(AtomFilter) - Method in class edu.umd.cs.psl.evaluation.statistics.ContinuousPredictionComparator
-
- setResultFilter(AtomFilter) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparator
-
- setResultFilter(AtomFilter) - Method in class edu.umd.cs.psl.evaluation.statistics.MulticlassPredictionComparator
-
TODO: Does it make sense to have this method for this class?
- setResultFilter(AtomFilter) - Method in interface edu.umd.cs.psl.evaluation.statistics.ResultComparator
-
Sets a filter on the
RandomVariableAtoms
in the results Database that will be compared with the baseline.
- setResultFilter(AtomFilter) - Method in class edu.umd.cs.psl.evaluation.statistics.SimpleRankingComparator
-
- setSize(int) - Method in class edu.umd.cs.psl.util.graph.partition.hierarchical.HierarchicalPartitioning
-
- setSize(int) - Method in interface edu.umd.cs.psl.util.graph.partition.Partitioner
-
Define the size of the partition, i.e.
- setSlackPenalty(double) - Method in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Sets slack coefficient for max margin constraints
- setSplitStep(SplitStep) - Method in class edu.umd.cs.psl.util.datasplitter.DataSplitter
-
- setSubsplitter(DataSplitter) - Method in class edu.umd.cs.psl.util.datasplitter.DataSplitter
-
- SetTerm - Interface in edu.umd.cs.psl.model.set.term
-
- setThreshold(double) - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparator
-
- SetUnion - Class in edu.umd.cs.psl.model.set.term
-
- SetUnion(SetTerm, SetTerm) - Constructor for class edu.umd.cs.psl.model.set.term.SetUnion
-
- setUp() - Method in class edu.umd.cs.psl.database.DatabasePopulatorTest
-
- setUp() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- setUp() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparatorTest
-
- setUp() - Method in class edu.umd.cs.psl.model.atom.AtomEventFrameworkTest
-
- setUp() - Method in class edu.umd.cs.psl.optimizer.conic.ConicProgramSolverContractTest
-
- setUp() - Method in class edu.umd.cs.psl.optimizer.conic.ipm.SecondOrderConeTest
-
- setUp() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartitionTest
-
- setUp() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
- setUp() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- setUp() - Method in class edu.umd.cs.psl.optimizer.conic.util.FeasiblePointInitializerTest
-
- setUp() - Method in class edu.umd.cs.psl.reasoner.admm.HingeLossTermTest
-
- setUp() - Method in class edu.umd.cs.psl.reasoner.admm.LinearConstraintTermTest
-
- setUp() - Method in class edu.umd.cs.psl.reasoner.admm.LinearLossTermTest
-
- setUp() - Method in class edu.umd.cs.psl.reasoner.admm.SquaredHingeLossTermTest
-
- setUp() - Method in class edu.umd.cs.psl.reasoner.admm.SquaredLinearLossTermTest
-
- setUp() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
- setUpperBound(int, double) - Method in class edu.umd.cs.psl.optimizer.lbfgs.LBFGSB
-
- setupSeparationOracle() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.L1MaxMargin
-
- setupSeparationOracle() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Performs any initialization necessary for the separation oracle.
- setupTimeKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- setValue(double, Object...) - Method in interface edu.umd.cs.psl.database.loading.Updater
-
- setValue(double, double, Object...) - Method in interface edu.umd.cs.psl.database.loading.Updater
-
- setValue(double) - Method in class edu.umd.cs.psl.model.atom.RandomVariableAtom
-
Sets the truth value of this Atom.
- setValue(double) - Method in class edu.umd.cs.psl.reasoner.function.ConstantAtomFunctionVariable
-
- setValue(double) - Method in interface edu.umd.cs.psl.reasoner.function.FunctionVariable
-
Sets the variable's value
- setValue(double) - Method in class edu.umd.cs.psl.reasoner.function.MutableAtomFunctionVariable
-
- setValues(double[], Object...) - Method in interface edu.umd.cs.psl.database.loading.Updater
-
- setValues(double[], double[], Object...) - Method in interface edu.umd.cs.psl.database.loading.Updater
-
- setVariable(Variable, int) - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- setVariable(Variable, Double) - Method in class edu.umd.cs.psl.optimizer.conic.program.LinearConstraint
-
- setWeight(Weight) - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.LossAugmentingGroundKernel
-
- setWeight(Weight) - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- setWeight(double) - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.admm.NegativeLogLossTerm
-
- setWeight(Weight) - Method in interface edu.umd.cs.psl.model.kernel.CompatibilityKernel
-
- setWeight(Weight) - Method in interface edu.umd.cs.psl.model.kernel.GroundCompatibilityKernel
-
Sets a weight for this GroundCompatibilityKernel.
- setWeight(Weight) - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- setWeight(Weight) - Method in class edu.umd.cs.psl.model.kernel.rule.GroundCompatibilityRule
-
- setWeight(double) - Method in interface edu.umd.cs.psl.reasoner.admm.WeightedObjectiveTerm
-
- setWeight(Relationship, Double) - Method in class edu.umd.cs.psl.util.graph.weight.HashRelationshipWeighter
-
- setWeightMutable(boolean) - Method in interface edu.umd.cs.psl.model.kernel.CompatibilityKernel
-
- setWeightMutable(boolean) - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- SimpleAtomManager - Class in edu.umd.cs.psl.model.atom
-
AtomManager that does not provide any functionality beyond passing calls
to underlying components.
- SimpleAtomManager(Database) - Constructor for class edu.umd.cs.psl.model.atom.SimpleAtomManager
-
- SimpleBuildDBStep - Class in edu.umd.cs.psl.util.datasplitter.builddbstep
-
A simple class for the
BuildDBStep
interface that creates a list of
DBDefinition
s
with closed predicates specified by the user and a read partition to each collection of partitions in the passed list.
- SimpleBuildDBStep(Set<StandardPredicate>) - Constructor for class edu.umd.cs.psl.util.datasplitter.builddbstep.SimpleBuildDBStep
-
- SimpleRankingComparator - Class in edu.umd.cs.psl.evaluation.statistics
-
- SimpleRankingComparator(Database) - Constructor for class edu.umd.cs.psl.evaluation.statistics.SimpleRankingComparator
-
- SimplexSampler - Class in edu.umd.cs.psl.application.learning.weight.maxlikelihood
-
- SimplexSampler(int) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxlikelihood.SimplexSampler
-
- SimplexSampler() - Constructor for class edu.umd.cs.psl.application.learning.weight.maxlikelihood.SimplexSampler
-
- SingleFoldLoader - Interface in edu.umd.cs.psl.ui.experiment.folds
-
- SingleFoldLoaderAdapter - Class in edu.umd.cs.psl.ui.experiment.folds
-
- SingleFoldLoaderAdapter(SingleLoader, SingleLoader) - Constructor for class edu.umd.cs.psl.ui.experiment.folds.SingleFoldLoaderAdapter
-
- SingleLoader - Interface in edu.umd.cs.psl.ui.experiment.folds
-
- size() - Method in interface edu.umd.cs.psl.application.groundkernelstore.GroundKernelStore
-
- size() - Method in class edu.umd.cs.psl.application.groundkernelstore.MemoryGroundKernelStore
-
- size() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- size() - Method in interface edu.umd.cs.psl.database.ResultList
-
- size() - Method in class edu.umd.cs.psl.model.set.membership.ConstantMembership
-
- size() - Method in interface edu.umd.cs.psl.model.set.membership.Membership
-
- size() - Method in class edu.umd.cs.psl.model.set.membership.SoftMembership
-
- size() - Method in class edu.umd.cs.psl.optimizer.conic.partition.AbstractCompletePartitioner
-
- size() - Method in interface edu.umd.cs.psl.optimizer.conic.partition.CompletePartitioner
-
- size() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- size() - Method in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- size() - Method in class edu.umd.cs.psl.reasoner.conic.ConicReasoner
-
- size() - Method in class edu.umd.cs.psl.reasoner.ExecutableReasoner
-
- size() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- size() - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- size() - Method in class edu.umd.cs.psl.ui.data.graph.Subgraph
-
- size() - Method in class edu.umd.cs.psl.util.collection.HashList
-
- SLACK_PENALTY - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Key for slack penalty C, where objective is ||w|| + C * slack
- SLACK_PENALTY_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Default value for SLACK_PENALTY_KEY
- SLACK_PENALTY_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.random.HardEMRandOM
-
Default value for SLACK_PENALTY
- SLACK_PENALTY_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Key for double property, slack penalty C, where objective is ||w|| + C (slack)
- slackPenalty - Variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- sliceHeight - Variable in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- SliceRandOM - Class in edu.umd.cs.psl.application.learning.weight.random
-
- SliceRandOM(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- SoftMembership<A> - Class in edu.umd.cs.psl.model.set.membership
-
- SoftMembership() - Constructor for class edu.umd.cs.psl.model.set.membership.SoftMembership
-
- SoftTermMembership - Class in edu.umd.cs.psl.model.set.membership
-
- SoftTermMembership() - Constructor for class edu.umd.cs.psl.model.set.membership.SoftTermMembership
-
- solve() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MinNormProgram
-
solves current conic program
- solve() - Method in interface edu.umd.cs.psl.optimizer.conic.ConicProgramSolver
-
- solve() - Method in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
- solve() - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- solve(DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- solve(DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.Cholesky
-
- solve(DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.ConjugateGradient
-
- solve(DoubleMatrix1D) - Method in interface edu.umd.cs.psl.optimizer.conic.ipm.solver.NormalSystemSolver
-
- solve() - Method in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
- SOLVE_FORM_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
Default value for SOLVE_FORM_KEY property
- SOLVE_FORM_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
Key for solveform
property.
- solveNormalSystem(SparseCCDoubleMatrix2D, DoubleMatrix1D, ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.cg.ConjugateGradientIPM
-
- solveNormalSystem(SparseCCDoubleMatrix2D, DoubleMatrix1D, ConicProgram) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- SpecialPredicate - Class in edu.umd.cs.psl.model.predicate
-
A commonly used FunctionalPredicate.
- split(Database) - Method in class edu.umd.cs.psl.util.datasplitter.DataSplitter
-
- splitGraphRandom(int, ET) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- splitGraphSnowball(int, ET, int, double) - Method in class edu.umd.cs.psl.ui.data.graph.Graph
-
- SplitStep - Interface in edu.umd.cs.psl.util.datasplitter.splitstep
-
- SQUARE_SLACK_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Default value for SQUARE_SLACK KEY
- SQUARE_SLACK_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
Key for SquareSlack boolean property.
- squared - Variable in class edu.umd.cs.psl.model.kernel.rule.CompatibilityAveragingRuleKernel
-
- squared - Variable in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- SQUARED - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- SQUARED() - Method in class edu.umd.cs.psl.parser.PSLParser.KernelContext
-
- SQUARED - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- SquaredHingeLossTermTest - Class in edu.umd.cs.psl.reasoner.admm
-
- SquaredHingeLossTermTest() - Constructor for class edu.umd.cs.psl.reasoner.admm.SquaredHingeLossTermTest
-
- SquaredLinearLossTermTest - Class in edu.umd.cs.psl.reasoner.admm
-
- SquaredLinearLossTermTest() - Constructor for class edu.umd.cs.psl.reasoner.admm.SquaredLinearLossTermTest
-
- SquareMatrix - Class in edu.umd.cs.psl.evaluation.statistics
-
Square matrix data structure.
- SquareMatrix(int) - Constructor for class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Initializes an empty square matrix of size length x length.
- SquareMatrix(SquareMatrix) - Constructor for class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Copy constructor.
- squareSlack - Variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- StandardPredicate - Class in edu.umd.cs.psl.model.predicate
-
- start() - Method in class edu.umd.cs.psl.evaluation.debug.CmdDebugger
-
- start() - Method in interface edu.umd.cs.psl.evaluation.debug.Debugger
-
- StatisticsUtil - Class in edu.umd.cs.psl.ui.experiment.report
-
- StatisticsUtil() - Constructor for class edu.umd.cs.psl.ui.experiment.report.StatisticsUtil
-
- step - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron.IntermediateState
-
- step(ConicProgram, DoubleMatrix1D, DoubleMatrix2D, double, double, boolean) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- STEP_SCHEDULE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for STEP_SCHEDULE_KEY
- STEP_SCHEDULE_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for Boolean property that indicates whether to shrink the stepsize by
a 1/t schedule.
- STEP_SIZE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Default value for STEP_SIZE_KEY
- STEP_SIZE_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Default value for STEP_SIZE_KEY property
- STEP_SIZE_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Key for positive double property which will be multiplied with the
objective gradient to compute a step.
- STEP_SIZE_KEY - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Key for non-negative double property.
- stepIn() - Method in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- stepIn() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- stepIn() - Method in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
Samples a point from the slice inside the region.
- stepOut() - Method in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- stepOut() - Method in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- stepOut() - Method in class edu.umd.cs.psl.application.learning.weight.random.SliceRandOM
-
- stepSize - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- stepSize - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- stepSize - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- stepSize - Variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
- stop() - Method in class edu.umd.cs.psl.application.inference.LazyMPEInference
-
Notifies LazyMPEInference to stop inference at the end of the current round
- stop() - Method in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Notifies VotedPerceptron to exit after the current step
- STOP_CHECK_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Default value for STOP_CHECK_KEY property
- STOP_CHECK_KEY - Static variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Key for positive integer.
- STORE_WEIGHTS_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Default value for STORE_WEIGHTS_KEY
- STORE_WEIGHTS_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Key for Boolean property that indicates whether to store weights along entire optimization path
- storedWeights - Variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- storeWeights - Variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- STR_ARG - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- STR_ARG - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- strConstant() - Method in class edu.umd.cs.psl.parser.PSLParser.ConstantContext
-
- strConstant() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- strictEpsilon - Static variable in class edu.umd.cs.psl.model.NumericUtilities
-
- STRING - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- STRING() - Method in class edu.umd.cs.psl.parser.PSLParser.StrConstantContext
-
- STRING - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- StringAttribute - Class in edu.umd.cs.psl.model.argument
-
- StringAttribute(String) - Constructor for class edu.umd.cs.psl.model.argument.StringAttribute
-
Constructs a StringAttribute from a String
- Subgraph<ET extends EntityType,RT extends RelationType> - Class in edu.umd.cs.psl.ui.data.graph
-
- Subgraph() - Constructor for class edu.umd.cs.psl.ui.data.graph.Subgraph
-
- subList(int, int) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- submit(Runnable) - Method in class edu.umd.cs.psl.util.concurrent.ThreadPool
-
- subset(String) - Method in interface edu.umd.cs.psl.config.ConfigBundle
-
Return a ConfigBundle containing every key from the current
ConfigBundle that starts with the specified prefix.
- subset(String) - Method in class edu.umd.cs.psl.config.EmptyBundle
-
- SubStringSimilarity - Class in edu.umd.cs.psl.ui.functions.textsimilarity
-
- SubStringSimilarity() - Constructor for class edu.umd.cs.psl.ui.functions.textsimilarity.SubStringSimilarity
-
- sum - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- sum - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- sum - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- sum - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- sum - Variable in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- sumSq - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- sumSq - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- sumSq - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundMetropolisRandOM
-
- sumSq - Variable in class edu.umd.cs.psl.application.learning.weight.random.GroundSliceRandOM
-
- supportsConeTypes(Collection<ConeType>) - Method in interface edu.umd.cs.psl.optimizer.conic.ConicProgramSolver
-
- supportsConeTypes(Collection<ConeType>) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
- supportsConeTypes(Collection<ConeType>) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- supportsConeTypes(Collection<ConeType>) - Method in class edu.umd.cs.psl.optimizer.conic.mosek.MOSEK
-
- supportsConeTypes(Collection<ConeType>) - Method in interface edu.umd.cs.psl.optimizer.conic.partition.CompletePartitioner
-
- supportsConeTypes(Collection<ConeType>) - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartition
-
- supportsConeTypes(Collection<ConeType>) - Method in class edu.umd.cs.psl.optimizer.conic.partition.HierarchicalPartitioner
-
- supportsConeTypes(Collection<ConeType>) - Static method in class edu.umd.cs.psl.optimizer.conic.util.Dualizer
-
- supportsConeTypes(Collection<ConeType>) - Static method in class edu.umd.cs.psl.optimizer.conic.util.FeasiblePointInitializer
-
- SYMMETRIC - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- SYMMETRIC() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- SYMMETRIC - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- SymmetryConstraintKernel - Class in edu.umd.cs.psl.model.kernel.predicateconstraint
-
- SymmetryConstraintKernel(StandardPredicate) - Constructor for class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- sysTime() - Method in class edu.umd.cs.psl.optimizer.lbfgs.Timer
-
Returns system time in nanoseconds.
- tableName() - Method in interface edu.umd.cs.psl.database.rdbms.RDBMSPredicateHandle
-
- TASK_DEFAULT - Static variable in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
Default value for TASK_KEY property (MPE)
- TASK_KEY - Static variable in class edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner
-
Key for Task enum property which is reasoner task to perform.
- TAU_THRESHOLD_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Default value for TAU_THRESHOLD_KEY property.
- TAU_THRESHOLD_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.HomogeneousIPM
-
Key for double property.
- tearDown() - Method in class edu.umd.cs.psl.database.DatabasePopulatorTest
-
- tearDown() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- tearDownSeparationOracle() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.L1MaxMargin
-
- tearDownSeparationOracle() - Method in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- Term - Interface in edu.umd.cs.psl.model.argument
-
- TermMembership - Interface in edu.umd.cs.psl.model.set.membership
-
- terms - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.solver.BlockSolver
-
- terms - Variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Ground kernels wrapped to be objective function terms for ADMM
- testAccuracy() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparatorTest
-
- testAddDuplicateVariableToConstraint() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests adding the same variable twice to a linear constraint.
- testAddVariable() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
Tests adding a variable to a constraint in the primal program after checking
out and in.
- testAtomInReadAndWritePartitions() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testAtomInTwoReadPartitions() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testCheckInDualProgramBeforeCheckInDualMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckInDualProgramBeforeCheckOutDualProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckInPrimalMatricesBeforeCheckInDualProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckInSOCP() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests checking in matrices for a second-order cone program.
- testCheckOutAndIn() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckOutDualMatricesBeforeCheckOutDualProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckOutDualMatricesBeforeCheckOutPrimalMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckOutDualProgramBeforeCheckInDualProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckOutDualProgramBeforePrimalMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testCheckOutMatrices() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartitionTest
-
- testCheckOutModifiedSOCP() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests checking out matrices after checking them in and modifying the program.
- testCheckOutSOCP() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests checking out matrices for a second-order cone program.
- testCommit() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testCommitAfterClose() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testComplexPopulateDatabase() - Method in class edu.umd.cs.psl.database.DatabasePopulatorTest
-
- testCreateBooleanProperty() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests that a boolean property is indexed correctly after creation.
- testCreateConstraintAfterCheckIn() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests creating more constraints after checking matrices in.
- testCreateDuplicateRelationship() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests creating a duplicate relationship.
- testCreateEnumProperty() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests that an enum property is indexed correctly after creation.
- testCreateNNOCAfterCheckIn() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests creating more non-negative orthant cones after checking matrices in.
- testCreateNode() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests creating a node.
- testCreateProperty() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests creating a property.
- testCreateRelationship() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests creating a relationship.
- testCreateSOCP() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests the creation of a second-order cone program.
- testDeleteBooleanProperty() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests that a boolean property is indexed correctly after deletion.
- testDeleteBooleanPropertySelectively() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests that boolean properties are indexed correctly after deleting
one and leaving others untouched.
- testDeleteConstraintThenSlackVariable() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
Tests that the dualizer can correctly handle deleting a slack variable if
the corresponding linear constraint has already been deleted.
- testDeleteDuplicateRelationship() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests deleting a duplicate relationship.
- testDeleteEnumProperty() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests that an enum property is indexed correctly after deletion.
- testDeleteEqualityConstaint() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
Tests deleting an equality constraint, i.e., without a slack variable.
- testDeleteEverything() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
Tests that the dual program is empty after deleting everything in
the primal program.
- testDeleteNode() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests deleting a node.
- testDeletePartition() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testDeletePartitionInUse() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testDeleteProperty() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests deleting a property.
- testDeletePropertySelectively() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests deleting a property while leaving another untouched.
- testDeleteRegularVariable() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
Tests deleting a regular, i.e., non-slack, variable.
- testDeleteRelationship() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests deleting a relationship.
- testDeleteSlackVariable() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
Tests deleting a slack variable.
- testDeleteSOCP() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests deleting the components of a second-order cone program.
- testDoubleCommit() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testExecuteQuery() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testExecuteQueryIllegalProjectionVariable() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testExternalFunctionalPredicate() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testF1() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparatorTest
-
- testGetAtomAfterClose() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testGetAtomUnregisteredPredicate() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testGetAttribute() - Method in class edu.umd.cs.psl.util.graph.GraphContractTest
-
Tests getting an attribute from a node with multiple properties of the same type.
- testGetCutConstraints() - Method in class edu.umd.cs.psl.optimizer.conic.partition.ConicProgramPartitionTest
-
- testGetInserterForDeserializedPredicate() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testGetInserterPartitionInUseRead() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testGetInserterPartitionInUseWrite() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testGetInserterUnregisteredPredicate() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testGetMaxStep() - Method in class edu.umd.cs.psl.optimizer.conic.ipm.SecondOrderConeTest
-
- testInsertAndGetAtom() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testInsertTwoAtoms() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testIsClosed() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testLateRegisteredPredicate() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testMakeFeasible() - Method in class edu.umd.cs.psl.optimizer.conic.util.FeasiblePointInitializerTest
-
- testMinimize() - Method in class edu.umd.cs.psl.reasoner.admm.HingeLossTermTest
-
- testMinimize() - Method in class edu.umd.cs.psl.reasoner.admm.LinearConstraintTermTest
-
- testMinimize() - Method in class edu.umd.cs.psl.reasoner.admm.LinearLossTermTest
-
- testMinimize() - Method in class edu.umd.cs.psl.reasoner.admm.SquaredHingeLossTermTest
-
- testMinimize() - Method in class edu.umd.cs.psl.reasoner.admm.SquaredLinearLossTermTest
-
- testModifyDualProgram() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
- testPrecision() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparatorTest
-
- testPredicateRegistration() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testPredicateSerialization() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testQueryAfterClose() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testRecall() - Method in class edu.umd.cs.psl.evaluation.statistics.DiscretePredictionComparatorTest
-
- testRecreateSOCP() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgramTest
-
Tests creating, deleting, and then recreating a second-order cone program.
- testRegisterAndWorkOffJobQueue() - Method in class edu.umd.cs.psl.model.atom.AtomEventFrameworkTest
-
- testReplaceVariables() - Method in class edu.umd.cs.psl.optimizer.conic.util.DualizerTest
-
Tests deleting and replacing variables in the primal program after checking
out and in.
- testSharedReadPartition() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testSharedReadWritePartition1() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testSharedReadWritePartition2() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testSharedWritePartition() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testSimplePopulateDatabase() - Method in class edu.umd.cs.psl.database.DatabasePopulatorTest
-
- testSolve() - Method in class edu.umd.cs.psl.optimizer.conic.ConicProgramSolverContractTest
-
- testSolveAfterModification() - Method in class edu.umd.cs.psl.optimizer.conic.ConicProgramSolverContractTest
-
Tests solving a program after it has been solved once and modified.
- testSpecialPredicates() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- testStringEscaping() - Method in class edu.umd.cs.psl.database.DataStoreContractTest
-
- THEN - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- THEN() - Method in class edu.umd.cs.psl.parser.PSLParser.ExpressionContext
-
- THEN - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- THREAD_POOL_SIZE_DEFAULT - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.ParallelPartitionedIPM
-
- THREAD_POOL_SIZE_KEY - Static variable in class edu.umd.cs.psl.optimizer.conic.ipm.ParallelPartitionedIPM
-
- ThreadPool - Class in edu.umd.cs.psl.util.concurrent
-
- time() - Method in class edu.umd.cs.psl.optimizer.lbfgs.Timer
-
Returns CPU time in nanoseconds.
- timeInCornersKey - Static variable in class edu.umd.cs.psl.sampler.HitAndRunSamplerStatistics
-
- Timer - Class in edu.umd.cs.psl.optimizer.lbfgs
-
- Timer() - Constructor for class edu.umd.cs.psl.optimizer.lbfgs.Timer
-
- Tnorm - Enum in edu.umd.cs.psl.model.formula
-
A pair of binary functions for performing conjunction and disjunction
operations on values in [0,1].
- tnorm - Static variable in class edu.umd.cs.psl.model.kernel.rule.AbstractGroundRule
-
- toArray() - Method in class edu.umd.cs.psl.util.collection.HashList
-
- toArray(T[]) - Method in class edu.umd.cs.psl.util.collection.HashList
-
- toClose - Variable in class edu.umd.cs.psl.util.datasplitter.builddbstep.DBDefinition
-
- toClose - Variable in class edu.umd.cs.psl.util.datasplitter.builddbstep.QueryAtomsBuildDBStep
-
- tokenNames - Static variable in class edu.umd.cs.psl.parser.PSLLexer
-
- tokenNames - Static variable in class edu.umd.cs.psl.parser.PSLParser
-
- tolerance - Variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
- tolerance - Variable in class edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin
-
- TOLERANCE_DEFAULT - Static variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Default value for TOLERANCE_KEY property
- TOLERANCE_KEY - Static variable in class edu.umd.cs.psl.application.learning.weight.em.ExpectationMaximization
-
Key for positive double property for the minimum absolute change in weights
such that EM is considered converged
- toMatlabString() - Method in class edu.umd.cs.psl.evaluation.statistics.ConfusionMatrix
-
Returns a Matlab string representation of the confusion matrix.
- toMatlabString(int) - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Returns a Matlab string representation of the matrix.
- toStop - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
Stop flag to quit the loop.
- toString() - Method in class edu.umd.cs.psl.application.topicmodel.kernel.GroundLogLoss
-
- toString() - Method in class edu.umd.cs.psl.application.topicmodel.reasoner.function.NegativeLogFunction
-
- toString() - Method in class edu.umd.cs.psl.database.Partition
-
- toString() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSResultList
-
- toString() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueIntID
-
- toString() - Method in class edu.umd.cs.psl.database.rdbms.RDBMSUniqueStringID
-
- toString(Predicate, double) - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullConfidenceAnalysisResult
-
- toString(Predicate) - Method in class edu.umd.cs.psl.evaluation.resultui.UIFullConfidenceAnalysisResult
-
- toString() - Method in class edu.umd.cs.psl.evaluation.statistics.SquareMatrix
-
Returns ParallelColt's string representation of the matrix.
- toString() - Method in class edu.umd.cs.psl.model.argument.DateAttribute
-
- toString() - Method in class edu.umd.cs.psl.model.argument.DoubleAttribute
-
- toString() - Method in class edu.umd.cs.psl.model.argument.IntegerAttribute
-
- toString() - Method in class edu.umd.cs.psl.model.argument.LongAttribute
-
- toString() - Method in class edu.umd.cs.psl.model.argument.StringAttribute
-
- toString() - Method in interface edu.umd.cs.psl.model.argument.Term
-
- toString() - Method in interface edu.umd.cs.psl.model.argument.UniqueID
-
Returns a human-friendly String representation of this UniqueID.
- toString() - Method in class edu.umd.cs.psl.model.argument.Variable
-
- toString() - Method in class edu.umd.cs.psl.model.atom.Atom
-
- toString() - Method in class edu.umd.cs.psl.model.formula.AvgConjRule
-
- toString() - Method in class edu.umd.cs.psl.model.formula.Negation
-
- toString() - Method in class edu.umd.cs.psl.model.formula.Rule
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintKernel
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundDomainRangeConstraint
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.GroundSymmetryConstraint
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.predicateconstraint.SymmetryConstraintKernel
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.rule.AbstractGroundRule
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.rule.CompatibilityRuleKernel
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.rule.ConstraintRuleKernel
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundCompatibilityRule
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundConstraintRule
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.rule.GroundWeightedCompatibilityRule
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.GroundSetDefinition
-
- toString() - Method in class edu.umd.cs.psl.model.kernel.setdefinition.SetDefinitionKernel
-
- toString() - Method in class edu.umd.cs.psl.model.Model
-
Returns a String representation of this Model.
- toString() - Method in class edu.umd.cs.psl.model.parameters.Weight
-
- toString() - Method in class edu.umd.cs.psl.model.predicate.Predicate
-
- toString() - Method in class edu.umd.cs.psl.model.predicate.PredicateFactory
-
- toString() - Method in class edu.umd.cs.psl.model.set.term.ConstantSetTerm
-
- toString() - Method in class edu.umd.cs.psl.model.set.term.FormulaSetTerm
-
- toString() - Method in class edu.umd.cs.psl.model.set.term.SetUnion
-
- toString() - Method in class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- toString() - Method in class edu.umd.cs.psl.optimizer.conic.partition.AbstractCompletePartitioner
-
- toString() - Method in class edu.umd.cs.psl.reasoner.function.AtomFunctionVariable
-
- toString() - Method in class edu.umd.cs.psl.reasoner.function.ConstantNumber
-
- toString() - Method in class edu.umd.cs.psl.reasoner.function.ConstraintTerm
-
- toString() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSum
-
- toString() - Method in class edu.umd.cs.psl.reasoner.function.FunctionSummand
-
- toString() - Method in class edu.umd.cs.psl.reasoner.function.MaxFunction
-
- toString() - Method in class edu.umd.cs.psl.reasoner.function.PowerOfTwo
-
- toString() - Method in class edu.umd.cs.psl.ui.aggregators.AggregateSetEquality
-
- toString() - Method in class edu.umd.cs.psl.ui.aggregators.EvidSetMin
-
- toString() - Method in class edu.umd.cs.psl.ui.aggregators.SetMin
-
- toString() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.CosineSimilarity
-
- toString() - Method in class edu.umd.cs.psl.ui.functions.textsimilarity.LevenshteinSimilarity
-
- traceAtomEvent(Atom) - Method in class edu.umd.cs.psl.model.formula.FormulaAnalysis.DNFClause
-
- TrainingMap - Class in edu.umd.cs.psl.application.learning.weight
-
- TrainingMap(Database, Database) - Constructor for class edu.umd.cs.psl.application.learning.weight.TrainingMap
-
- trainingMap - Variable in class edu.umd.cs.psl.application.learning.weight.WeightLearningApplication
-
- trainModel() - Method in class edu.umd.cs.psl.application.topicmodel.LatentTopicNetwork
-
- transApply(DoubleMatrix1D, DoubleMatrix1D) - Method in class edu.umd.cs.psl.optimizer.conic.ipm.solver.preconditioner.BlockPreconditioner
-
- traverse(Formula, V) - Static method in class edu.umd.cs.psl.model.formula.traversal.AbstractFormulaTraverser
-
- trimUnrestrictedVariablePairs() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- truthIncompatibility - Variable in class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- tryDualize - Variable in class edu.umd.cs.psl.optimizer.conic.ipm.IPM
-
- type - Variable in class edu.umd.cs.psl.ui.data.graph.Relation
-
- value - Variable in class edu.umd.cs.psl.model.atom.GroundAtom
-
- VALUE_COLUMN_DEFAULT - Static variable in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
Default value for the VALUE_COLUMN_KEY property
- VALUE_COLUMN_KEY - Static variable in class edu.umd.cs.psl.database.rdbms.RDBMSDataStore
-
Key for String property for the name of the value column in the database.
- valueColumn() - Method in interface edu.umd.cs.psl.database.rdbms.RDBMSPredicateHandle
-
- valueOf(String) - Static method in enum edu.umd.cs.psl.application.learning.weight.maxmargin.L1MaxMargin.LossBalancingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin.NormScalingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.evaluation.statistics.ContinuousPredictionComparator.Metric
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics.BinaryClass
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.evaluation.statistics.RankingScore
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.groovy.PredicateConstraint
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.groovy.SetComparison
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.groovy.syntax.OIPModifier
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.model.argument.ArgumentType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.model.atom.AtomEvent.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.model.formula.Tnorm
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.model.kernel.BindingMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.model.ModelEvent.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.optimizer.conic.program.ConeType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.optimizer.conic.program.ConicProgramEvent
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.reasoner.bool.AD3Reasoner.Algorithm
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner.Task
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum edu.umd.cs.psl.reasoner.function.FunctionComparator
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum edu.umd.cs.psl.application.learning.weight.maxmargin.L1MaxMargin.LossBalancingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.application.learning.weight.maxmargin.MaxMargin.NormScalingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.database.rdbms.driver.H2DatabaseDriver.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.evaluation.statistics.ContinuousPredictionComparator.Metric
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.evaluation.statistics.DiscretePredictionStatistics.BinaryClass
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.evaluation.statistics.RankingScore
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.groovy.PredicateConstraint
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.groovy.SetComparison
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.groovy.syntax.OIPModifier
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.model.argument.ArgumentType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.model.atom.AtomEvent.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.model.formula.Tnorm
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.model.kernel.BindingMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.model.kernel.predicateconstraint.DomainRangeConstraintType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.model.ModelEvent.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.optimizer.conic.program.ConeType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.optimizer.conic.program.ConicProgramEvent
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.reasoner.bool.AD3Reasoner.Algorithm
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.reasoner.bool.UAIFormatReasoner.Task
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum edu.umd.cs.psl.reasoner.function.FunctionComparator
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- Variable - Class in edu.umd.cs.psl.model.argument
-
- Variable(String) - Constructor for class edu.umd.cs.psl.model.argument.Variable
-
Constructs a Variable, given a name.
- Variable - Class in edu.umd.cs.psl.optimizer.conic.program
-
- variable() - Method in class edu.umd.cs.psl.parser.PSLParser.ArgumentContext
-
- variable() - Method in class edu.umd.cs.psl.parser.PSLParser
-
- VariableAssignment - Class in edu.umd.cs.psl.model.atom
-
- VariableAssignment(int) - Constructor for class edu.umd.cs.psl.model.atom.VariableAssignment
-
Constructor parameterized by an initial size.
- VariableAssignment() - Constructor for class edu.umd.cs.psl.model.atom.VariableAssignment
-
Default constructor with size=4.
- variables - Variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Ordered list of variables for looking up indices in z
- VariableSetTerm - Class in edu.umd.cs.psl.model.set.term
-
- VariableSetTerm(Variable, ArgumentType) - Constructor for class edu.umd.cs.psl.model.set.term.VariableSetTerm
-
- VariableTypeMap - Class in edu.umd.cs.psl.model.argument
-
A hashed storage class for arguments, keyed on their associated variables.
- VariableTypeMap() - Constructor for class edu.umd.cs.psl.model.argument.VariableTypeMap
-
- variance - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderMetropolisRandOM
-
- variance - Variable in class edu.umd.cs.psl.application.learning.weight.random.FirstOrderSliceRandOM
-
- varLocations - Variable in class edu.umd.cs.psl.reasoner.admm.ADMMReasoner
-
Lists of local variable locations for updating consensus variables
- verifyCheckedIn() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- verifyCheckedIn() - Method in class edu.umd.cs.psl.optimizer.conic.util.Dualizer
-
- verifyCheckedOut() - Method in class edu.umd.cs.psl.optimizer.conic.program.ConicProgram
-
- verifyCheckedOut() - Method in class edu.umd.cs.psl.optimizer.conic.util.Dualizer
-
- visitArgument(PSLParser.ArgumentContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitArgument(PSLParser.ArgumentContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitArgumentType(PSLParser.ArgumentTypeContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitArgumentType(PSLParser.ArgumentTypeContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitAtom(Atom) - Method in class edu.umd.cs.psl.database.rdbms.Formula2SQL
-
- visitAtom(Atom) - Method in class edu.umd.cs.psl.model.formula.traversal.AbstractFormulaTraverser
-
- visitAtom(Atom) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaEvaluator
-
- visitAtom(Atom) - Method in class edu.umd.cs.psl.model.formula.traversal.FormulaGrounder
-
- visitAtom(Atom) - Method in interface edu.umd.cs.psl.model.formula.traversal.FormulaTraverser
-
- visitAtom(PSLParser.AtomContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitAtom(PSLParser.AtomContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitConstant(PSLParser.ConstantContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitConstant(PSLParser.ConstantContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitConstraint(PSLParser.ConstraintContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitConstraint(PSLParser.ConstraintContext) - Method in class edu.umd.cs.psl.parser.PSLModelLoader
-
- visitConstraint(PSLParser.ConstraintContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitConstraintType(PSLParser.ConstraintTypeContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitConstraintType(PSLParser.ConstraintTypeContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitErrorNode(ErrorNode) - Method in class edu.umd.cs.psl.parser.PSLBaseListener
-
The default implementation does nothing.
- visitExpression(PSLParser.ExpressionContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitExpression(PSLParser.ExpressionContext) - Method in class edu.umd.cs.psl.parser.PSLModelLoader
-
- visitExpression(PSLParser.ExpressionContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitIntConstant(PSLParser.IntConstantContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitIntConstant(PSLParser.IntConstantContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitKernel(PSLParser.KernelContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitKernel(PSLParser.KernelContext) - Method in class edu.umd.cs.psl.parser.PSLModelLoader
-
- visitKernel(PSLParser.KernelContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitPredicate(PSLParser.PredicateContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitPredicate(PSLParser.PredicateContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitPredicateDefinition(PSLParser.PredicateDefinitionContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitPredicateDefinition(PSLParser.PredicateDefinitionContext) - Method in class edu.umd.cs.psl.parser.PSLModelLoader
-
- visitPredicateDefinition(PSLParser.PredicateDefinitionContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitProgram(PSLParser.ProgramContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitProgram(PSLParser.ProgramContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitStrConstant(PSLParser.StrConstantContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitStrConstant(PSLParser.StrConstantContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitTerminal(TerminalNode) - Method in class edu.umd.cs.psl.parser.PSLBaseListener
-
The default implementation does nothing.
- visitVariable(PSLParser.VariableContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitVariable(PSLParser.VariableContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- visitWeight(PSLParser.WeightContext) - Method in class edu.umd.cs.psl.parser.PSLBaseVisitor
-
- visitWeight(PSLParser.WeightContext) - Method in interface edu.umd.cs.psl.parser.PSLVisitor
-
- VotedPerceptron - Class in edu.umd.cs.psl.application.learning.weight.maxlikelihood
-
TODO: rewrite class documentation to describe general gradient-based learning algorithms
TODO: refactor class so loss augmentation is a strategy that can only be applied to inference-based learning objectives
Learns new weights for the
CompatibilityKernels
in a
Model
using the voted perceptron algorithm.
- VotedPerceptron(Model, Database, Database, ConfigBundle) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron
-
- VotedPerceptron.IntermediateState - Class in edu.umd.cs.psl.application.learning.weight.maxlikelihood
-
Intermediate state object to notify the registered observers.
- VotedPerceptron.IntermediateState(int, int) - Constructor for class edu.umd.cs.psl.application.learning.weight.maxlikelihood.VotedPerceptron.IntermediateState
-